
boost_histogram

Henry Schreiner, Hans Dembinski

Apr 24, 2024

USER GUIDE:

1 Installation 3

2 Quickstart 5

3 Histogram 11

4 Axes 15

5 Storages 19

6 Accumulators 21

7 Using Transforms 25

8 Indexing 29

9 Plotting 31

10 Analyses examples 33

11 NumPy compatibility 35

12 Subclassing (advanced) 37

13 Comparison with Boost.Histogram 39

14 Simple Example 41

15 ROOT file format example 43

16 Threaded Fills 45

17 Performance Comparison 47

18 XArray Example 51

19 Using boost-histogram 59

20 Contributing 71

21 Support 77

22 Changelog 79

i

23 boost_histogram 95

24 boost_histogram.axis 99

25 boost_histogram.axis.transform 103

26 boost_histogram.accumulators 105

27 boost_histogram.numpy 107

28 boost_histogram.storage 113

29 boost_histogram.tag 115

30 boost_histogram.version 117

31 Acknowledgements 119

32 Indices and tables 121

Python Module Index 123

Index 125

ii

boost_histogram

Boost-histogram (source) is a Python package providing Python bindings for Boost.Histogram (source). You can install
this library from PyPI with pip or you can use Conda via conda-forge:

python -m pip install boost-histogram

conda install -c conda-forge boost-histogram

All the normal best-practices for Python apply; you should be in a virtual environment, etc. See Installation for more
details. An example of usage:

import boost_histogram as bh

Compose axis however you like; this is a 2D histogram
hist = bh.Histogram(bh.axis.Regular(2, 0, 1), bh.axis.Regular(4, 0.0, 1.0))

Filling can be done with arrays, one per dimension
hist.fill([0.3, 0.5, 0.2], [0.1, 0.4, 0.9])

NumPy array view into histogram counts, no overflow bins
counts = hist.view()

See Quickstart for more.

USER GUIDE: 1

https://github.com/scikit-hep/boost-histogram/actions
https://boost-histogram.readthedocs.io/en/latest/?badge=latest
https://pypi.org/project/boost-histogram
https://github.com/conda-forge/boost-histogram-feedstock
https://pypi.org/project/boost-histogram/
https://zenodo.org/badge/latestdoi/148885351
https://github.com/scikit-hep/boost-histogram/discussions
https://gitter.im/HSF/PyHEP-histogramming?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge
https://scikit-hep.org/
https://github.com/scikit-hep/boost-histogram
https://www.boost.org/doc/libs/release/libs/histogram/doc/html/index.html
https://github.com/boostorg/histogram
https://pypi.org/project/boost-histogram/
https://github.com/conda-forge/boost-histogram-feedstock

boost_histogram

2 USER GUIDE:

CHAPTER

ONE

INSTALLATION

Boost-histogram (source) is a Python package providing Python bindings for Boost.Histogram (source).

You can install this library from PyPI with pip:

python -m pip install boost-histogram

or you can use Conda through conda-forge:

conda install -c conda-forge boost-histogram

All the normal best-practices for Python apply; you should be in a virtual environment, etc.

1.1 Supported platforms

1.1.1 Binaries available:

The supported platforms are listed in the README - All common linux machines, all common macOS versions, and
all common Windows versions.

1.1.2 Conda-Forge

The boost-histogram package is available on Conda-Forge, as well. All supported versions are available.

conda install -c conda-forge boost-histogram

1.1.3 Source builds

For a source build, for example from an “sdist” package, the only requirements are a C++14 compatible compiler. The
compiler requirements are dictated by Boost.Histogram’s C++ requirements: gcc >= 5.5, clang >= 3.8, msvc >= 14.1.
You should have a version of pip less than 2-3 years old (10+).

NumPy is downloaded during the build (enables multithreaded builds). Boost is not required or needed (this only
depends on included header-only dependencies).This library is under active development; you can install directly from
GitHub if you would like.

python -m pip install git+https://github.com/scikit-hep/boost-histogram.git@develop

3

https://github.com/scikit-hep/boost-histogram
https://www.boost.org/doc/libs/release/libs/histogram/doc/html/index.html
https://github.com/boostorg/histogram
https://pypi.org/project/boost-histogram/
https://github.com/conda-forge/boost-histogram-feedstock

boost_histogram

4 Chapter 1. Installation

CHAPTER

TWO

QUICKSTART

All of the examples will assume the following import:

import boost_histogram as bh

In boost-histogram, a histogram is collection of Axis objects and a storage.

2.1 Making a histogram

You can make a histogram like this:

hist = bh.Histogram(bh.axis.Regular(bins=10, start=0, stop=1))

If you’d like to type less, you can leave out the keywords:

hist = bh.Histogram(bh.axis.Regular(10, 0, 1))

The exact same syntax is used for 1D, 2D, and ND histograms:

5

boost_histogram

hist3D = bh.Histogram(
bh.axis.Regular(10, 0, 100, circular=True),
bh.axis.Regular(10, 0.0, 10.0),
bh.axis.Variable([1, 2, 3, 4, 5, 5.5, 6]),

)

See Axes and Using Transforms.

You can also select a different storage with the storage= keyword argument; see Storages for details about the other
storages.

2.2 Filling a histogram

Once you have a histogram, you can fill it using .fill. Ideally, you should give arrays, but single values work as well:

hist = bh.Histogram(bh.axis.Regular(10, 0.0, 1.0))
hist.fill(0.9)
hist.fill([0.9, 0.3, 0.4])

2.3 Slicing and rebinning

You can slice into a histogram using bin coordinates or data coordinates using bh.loc(v). You can also rebin with
bh.rebin(n) or remove an entire axis using sum (technically as the third slice argument, though it is allowed by itself
as well):

hist = bh.Histogram(
bh.axis.Regular(10, 0, 1),
bh.axis.Regular(10, 0, 1),
bh.axis.Regular(10, 0, 1),

)
mini = hist[1:5, bh.loc(0.2) : bh.loc(0.9), sum]
Will be 4 bins x 7 bins

See Indexing.

2.4 Accessing the contents

You can use hist.values() to get a NumPy array from any histogram. You can get the variances with hist.
variances(), though if you fill an unweighted storage with weights, this will return None, as you no longer can
compute the variances correctly (please use a weighted storage if you need to). You can also get the number of entries
in a bin with .counts(); this will return counts even if your storage is a mean storage. See Plotting.

If you want access to the full underlying storage, .view()will return a NumPy array for simple storages or a RecArray-
like wrapper for non-simple storages. Most methods offer an optional keyword argument that you can pass, flow=True,
to enable the under and overflow bins (disabled by default).

np_array = hist.view()

6 Chapter 2. Quickstart

boost_histogram

2.5 Setting the contents

You can set the contents directly as you would a NumPy array; you can set either values or arrays at a time:

hist[2] = 3.5
hist[bh.underflow] = 0 # set the underflow bin
hist2d[3:5, 2:4] = np.eye(2) # set with array

For non-simple storages, you can add an extra dimension that matches the constructor arguments of that accumulator.
For example, if you want to fill a Weight histogram with three values, you can dimension:

hist[0:3] = [[1, 0.1], [2, 0.2], [3, 0.3]]

See Indexing.

2.6 Accessing Axes

The axes are directly available in the histogram, and you can access a variety of properties, such as the edges or the
centers. All properties and methods are also available directly on the axes tuple:

ax0 = hist.axes[0]
X, Y = hist.axes.centers

See Axes.

2.7 Saving Histograms

You can save histograms using pickle:

import pickle

with open("file.pkl", "wb") as f:
pickle.dump(h, f)

with open("file.pkl", "rb") as f:
h2 = pickle.load(f)

assert h == h2

Special care was taken to ensure that this is fast and efficient. Please use the latest version of the Pickle protocol you
feel comfortable using; you cannot use version 0, the version that was default on Python 2. The most recent versions
provide performance benefits.

2.5. Setting the contents 7

boost_histogram

2.8 Computing with Histograms

As an complete example, let’s say you wanted to compute and plot the density:

#!/usr/bin/env python3

from __future__ import annotations

import functools
import operator

import matplotlib.pyplot as plt
import numpy as np

import boost_histogram as bh

Make a 2D histogram
hist = bh.Histogram(bh.axis.Regular(50, -3, 3), bh.axis.Regular(50, -3, 3))

Fill with Gaussian random values
hist.fill(np.random.normal(size=1_000_000), np.random.normal(size=1_000_000))

Compute the areas of each bin
areas = functools.reduce(operator.mul, hist.axes.widths)

Compute the density
density = hist.view() / hist.sum() / areas

Make the plot
fig, ax = plt.subplots()
mesh = ax.pcolormesh(*hist.axes.edges.T, density.T)
fig.colorbar(mesh)
plt.savefig("simple_density.png")

8 Chapter 2. Quickstart

boost_histogram

2.9 Comparing with Boost.Histogram

This is built on the Boost.Histogram library.

See Comparison with Boost.Histogram.

2.9. Comparing with Boost.Histogram 9

boost_histogram

10 Chapter 2. Quickstart

CHAPTER

THREE

HISTOGRAM

The Histogram object is the core of boost-histogram.

3.1 Filling

You call .fill to fill. You must have one 1D array (or scalar value) per dimension. For maximum performance,
numeric arrays should be continuously laid out in memory, and either 64-bit floats or ints. If any other layouts or
numeric datatypes are supplied, a temporary copy will be made internally before filling.

All storages support a weight= parameter, and some storages support a sample= parameter. If supplied, they must be
a scalar (applies to all items equally) or an iterable of scalars/1D arrays that matches the number of dimensions of the
histogram.

The summing accumulators (not Mean() and WeightedMean())) support threaded filling. Pass threads=N to the fill
parameter to fill with N threads (and using 0 will select the number of virtual cores on your system). This is helpful only
if you have a large number of entries compared to your number of bins, as all non-atomic storages will make copies for
each thread, and then will recombine after the fill is complete.

3.2 Data

The primary values from a histogram are always available as .values(). The variances are available as .
variances(), unless you fill an unweighed histogram with weights, which will cause this to return None, since the
variances are no longer computable (use a weighted storage instead if you need the variances). The counts are available
as .counts(). If the histogram is weighted, .counts() returns the effective counts; see UHI for details.

3.3 Views

While Histograms do conform to the Python buffer protocol, the best way to get access to the raw contents of a histogram
as a NumPy array is with .view(). This way you can optionally pass flow=True to get the flow bins, and if you have
an accumulator storage, you will get a View, which is a slightly augmented ndarrray subclass (see Accumulators).
Views support setting as well for non-computed properties; you can use an expression like this to set the values of an
accumulator storage:

h.view().value = values

You can also used stacked arrays (N+1 dimensional) to set a histogram’s contents. This is especially useful if you need
to set a computed value, like variance on a Mean/WeightedMean storage, which cannot be set using the above method:

11

https://uhi.readthedocs.io/en/latest/plotting.html#the-full-protocol-version-1-follows

boost_histogram

h[...] = np.stack([values, variances], axis=-1)

If you leave endpoints off (such as with ... above), then you can match the size with or without flow bins.

3.4 Operations

• h.rank: The number of dimensions

• h.size or len(h): The number of bins

• +: Add two histograms, or add a scalar or array (storages must match types currently)

• *=: Multiply by a scaler, array, or histogram (not all storages) (hist * scalar and scalar * hist supported
too)

• /=: Divide by a scaler, array, or histogram (not all storages) (hist / scalar supported too)

• [...]: Access a bin or a range of bins (get or set) (see Indexing)

• .sum(flow=False): The total count of all bins

• .project(ax1, ax2, ...): Project down to listed axis (numbers)

• .to_numpy(flow=False, view=False): Convert to a NumPy style tuple (with or without under/overflow
bins, and either return values (the default) or the entire view for accumulator storages.)

• .view(flow=False): Get a view on the bin contents (with or without under/overflow bins)

• .values(flow=False): Get a view on the values (counts or means, depending on storage)

• .variances(flow=False): Get the variances if available

• .counts(flow=False): Get the effective counts for all storage types

• .reset(): Set counters to 0

• .empty(flow=False): Check to see if the histogram is empty (can check flow bins too if asked)

• .copy(deep=False): Make a copy of a histogram

• .axes: Get the axes as a tuple-like (all properties of axes are available too)

– .axes[0]: Get the 0th axis

– .axes.edges: The lower values as a broadcasting-ready array

– .axes.centers: The centers of the bins broadcasting-ready array

– .axes.widths: The bin widths as a broadcasting-ready array

– .axes.metadata: A tuple of the axes metadata

– .axes.traits: A tuple of the axes traits

– .axes.size: A tuple of the axes sizes (size without flow)

– .axes.extent: A tuple of the axes extents (size with flow)

– .axes.bin(*args): Returns the bin edges as a tuple of pairs (continuous axis) or values (describe)

– .axes.index(*args): Returns the bin index at a value for each axis

– .axes.value(*args): Returns the bin value at an index for each axis

12 Chapter 3. Histogram

boost_histogram

3.5 Saving a Histogram

You can save a histogram using pickle:

import pickle

with open("file.pkl", "wb") as f:
pickle.dump(h, f)

with open("file.pkl", "rb") as f:
h2 = pickle.load(f)

assert h == h2

Special care was taken to ensure that this is fast and efficient. Please use the latest version of the Pickle protocol you
feel comfortable using; you cannot use version 0, the version that used to be default on Python 2. The most recent
versions provide performance benefits.

You can nest this in other Python structures, like dictionaries, and save those instead.

3.5. Saving a Histogram 13

boost_histogram

14 Chapter 3. Histogram

CHAPTER

FOUR

AXES

In boost-histogram, a histogram is collection of Axis objects and a storage.

4.1 Axis types

There are several axis types to choose from.

4.1.1 Regular axis

bh.axis.Regular(bins, start, stop, *, metadata='', underflow=True, overflow=True, circular=False,
growth=False, transform=None)

The regular axis can have overflow and/or underflow bins (enabled by default). It can also grow if growth=True is
given. In general, you should not mix options, as growing axis will already have the correct flow bin settings. The
exception is underflow=False, overflow=False, which is quite useful together to make an axis with no flow bins
at all.

There are some other useful axis types based on regular axis:

bh.axis.Regular(..., circular=True)
This wraps around, so that out-of-range values map back into the valid range circularly.

15

boost_histogram

4.1.2 Regular axis: Transforms

Regular axes support transforms, as well; these are functions that convert from an external, non-regular bin spacing to
an internal, regularly spaced one. A transform is made of two functions, a forward function, which converts external
to internal (and for which the transform is usually named), and a inverse function, which converts from the internal
space back to the external space. If you know the functional form of your spacing, you can get the benefits of a constant
performance scaling just like you would with a normal regular axis, rather than falling back to a variable axis and a
poorer scaling from the bin edge lookup required there.

You can define your own functions for transforms, see Using Transforms. If you use compiled/numba functions, you
can keep the high performance you would expect from a Regular axis. There are also several precompiled transforms:

bh.axis.Regular(..., transform=bh.axis.transform.sqrt)
This is an axis with bins transformed by a sqrt.

bh.axis.Regular(..., transform=bh.axis.transform.log)
Transformed by log.

bh.axis.Regular(..., transform=bh.axis.transform.Power(v))
Transformed by a power (the argument is the power).

4.1.3 Variable axis

bh.axis.Variable([edge1, ...,]*, metadata="", underflow=True, overflow=True, circular=False, growth=False)
You can set the bin edges explicitly with a variable axis. The options are mostly the same as the Regular axis.

4.1.4 Integer axis

bh.axis.Integer(start, stop, *, metadata='', underflow=True, overflow=True, circular=False, growth=False)
This could be mimicked with a regular axis, but is simpler and slightly faster. Bins are whole integers only, so
there is no need to specify the number of bins.

One common use for an integer axis could be a true/false axis:

bool_axis = bh.axis.Integer(0, 2, underflow=False, overflow=False)

Another could be for an IntEnum if the values are contiguous.

16 Chapter 4. Axes

boost_histogram

4.2 Category axis

bh.axis.IntCategory([value1, ...,]metadata="", growth=False)
You should put integers in a category axis; but unlike an integer axis, the integers do not need to be adjacent.

One use for an IntCategory axis is for an IntEnum:

import enum

class MyEnum(enum.IntEnum):
a = 1
b = 5

my_enum_axis = bh.axis.IntEnum(list(MyEnum), underflow=False, overflow=False)

bh.axis.StrCategory([str1, ...,]metadata="", growth=False)
You can put strings in a category axis as well. The fill method supports lists or arrays of strings to allow this to
be filled.

4.3 Manipulating Axes

Axes have a variety of methods and properties that are useful. When inside a histogram, you can also access these
directly on the hist.axes object, and they return a tuple of valid results. If the property or method normally returns
an array, the axes version returns a broadcasting-ready version in the output tuple.

4.2. Category axis 17

boost_histogram

18 Chapter 4. Axes

CHAPTER

FIVE

STORAGES

There are several storages to choose from. To select a storage, pass the storage=bh.storage. argument when making
a histogram.

5.1 Simple storages

These storages hold a single value that keeps track of a count, possibly a weighed count.

5.1.1 Double

By default, boost-histogram selects the Double() storage. For most uses, this should be ideal. It is just as fast as the
Int64() storage, it can fill up to 53 bits of information (9 quadrillion) counts per cell, and supports weighted fills. It
can also be scaled by a floating point values without making a copy.

h = bh.Histogram(bh.axis.Regular(10, 0, 1)) # Double() is the default
h.fill([0.2, 0.3], weight=[0.5, 2]) # Weights are optional
print(f"{h[bh.loc(.2)]=}\n{h[bh.loc(.3)]=}") # Python 3.8 print

h[bh.loc(.2)]=0.5
h[bh.loc(.3)]=2.0

5.1.2 Unlimited

The Unlimited storage starts as an 8-bit integer and grows, and converts to a double if weights are used (or, currently,
if a view is requested). This allows you to keep the memory usage minimal, at the expense of occasionally making an
internal copy.

5.1.3 Int64

A true integer storage is provided, as well; this storage has the np.uint64 datatype. This eventually should provide
type safety by not accepting non-integer fills for data that should represent raw, unweighed counts.

h = bh.Histogram(bh.axis.Regular(10, 0, 1), storage=bh.storage.Int64())
h.fill([0.2, 0.3], weight=[1, 2]) # Integer weights supported
print(f"{h[bh.loc(.2)]=}\n{h[bh.loc(.2)]=}")

19

boost_histogram

h[bh.loc(.2)]=1
h[bh.loc(.3)]=2

5.1.4 AtomicInt64

This storage is like Int64(), but also provides a thread safety guarantee. You can fill a single histogram from multiple
threads.

5.2 Accumulator storages

These storages hold more than one number internally. They return a smart view when queried with .view(); see
Accumulators for information on each accumulator and view.

5.2.1 Weight

This storage keeps a sum of weights as well (in CERN ROOT, this is like calling .Sumw2() before filling a histogram).
It uses the WeightedSum accumulator.

5.2.2 Mean

This storage tracks a “Profile”, that is, the mean value of the accumulation instead of the sum. It stores the count (as a
double), the mean, and a term that is used to compute the variance. When filling, you must add a sample= term.

5.2.3 WeightedMean

This is similar to Mean, but also keeps track a sum of weights like term as well.

20 Chapter 5. Storages

CHAPTER

SIX

ACCUMULATORS

6.1 Common properties

All accumulators can be filled like a histogram. You just call .fill with values, and this looks and behaves like filling
a single-bin or “scalar” histogram. Like histograms, the fill is inplace.

All accumulators have a .value property as well, which gives the primary value being accumulated.

6.2 Types

There are several accumulators.

6.2.1 Sum

This is the simplest accumulator, and is never returned from a histogram. This is internally used by the Double and
Unlimited storages to perform sums when needed. It uses a highly accurate Neumaier sum to compute the floating point
sum with a correction term. Since this accumulator is never returned by a histogram, it is not available in a view form,
but only as a single accumulator for comparison and access to the algorithm. Usage example in Python 3.8, showing
how non-accurate sums fail to produce the obvious answer, 2.0:

import math
import numpy as np
import boost_histogram as bh

values = [1.0, 1e100, 1.0, -1e100]
print(f"{sum(values) = } (simple)")
print(f"{math.fsum(values) = }")
print(f"{np.sum(values) = } (pairwise)")
print(f"{bh.accumulators.Sum().fill(values) = }")

sum(values) = 0.0 (simple)
math.fsum(values) = 2.0
np.sum(values) = 0.0 (pairwise)
bh.accumulators.Sum().fill(values) = Sum(0 + 2)

Note that this is still intended for performance and does not guarantee correctness as math.fsum does. In general, you
must not have more than two orders of values:

21

boost_histogram

values = [1., 1e100, 1e50, 1., -1e50, -1e100]
print(f"{math.fsum(values) = }")
print(f"{bh.accumulators.Sum().fill(values) = }")

math.fsum(values) = 2.0
bh.accumulators.Sum().fill(values) = Sum(0 + 0)

You should note that this is a highly contrived example and the Sum accumulator should still outperform simple and
pairwise summation methods for a minimal performance cost. Most notably, you have to have large cancellations with
negative values, which histograms generally do not have.

You can use += with a float value or a Sum to fill as well.

6.2.2 WeightedSum

This accumulator is contained in the Weight storage, and supports Views. It provides two values; .value, and .
variance. The value is the sum of the weights, and the variance is the sum of the squared weights.

For example, you could sum the following values:

import boost_histogram as bh

values = [10]*10
smooth = bh.accumulators.WeightedSum().fill(values)
print(f"{smooth = }")

values = [1]*9 + [91]
rough = bh.accumulators.WeightedSum().fill(values)
print(f"{rough = }")

smooth = WeightedSum(value=100, variance=1000)
rough = WeightedSum(value=100, variance=8290)

When filling, you can optionally provide a variance= keyword, with either a single value or a matching length array
of values.

You can also fill with += on a value or another WeighedSum.

6.2.3 Mean

This accumulator is contained in the Mean storage, and supports Views. It provides three values; .count, .value, and
.variance. Internally, the variance is stored as _sum_of_deltas_squared, which is used to compute variance.

For example, you could compute the mean of the following values:

import boost_histogram as bh

values = [10]*10
smooth = bh.accumulators.Mean().fill(values)
print(f"{smooth = }")

values = [1]*9 + [91]
(continues on next page)

22 Chapter 6. Accumulators

boost_histogram

(continued from previous page)

rough = bh.accumulators.Mean().fill(values)
print(f"{rough = }")

smooth = Mean(count=10, value=10, variance=0)
rough = Mean(count=10, value=10, variance=810)

You can add a weight= keyword when filling, with either a single value or a matching length array of values.

You can call a Mean with a value or with another Mean to fill inplace, as well.

6.2.4 WeightedMean

This accumulator is contained in the WeightedMean storage, and supports Views. It provides four values; .
sum_of_weights, sum_of_weights_squared, .value, and .variance. Internally, the variance is stored as
_sum_of_weighted_deltas_squared, which is used to compute variance.

For example, you could compute the mean of the following values:

import boost_histogram as bh

values = [1]*9 + [91]
wm = bh.accumulators.WeightedMean().fill(values, weight=2)
print(f"{wm = }")

wm = WeightedMean(sum_of_weights=20, sum_of_weights_squared=40, value=10, variance=810)

You can add a weight= keyword when filling, with either a single value or a matching length array of values.

You can call a WeightedMean with a value or with another WeightedMean to fill inplace, as well.

6.3 Views

Most of the accumulators (except Sum) support a View. This is what is returned from a histogram when .view() is
requested. This is a structured NumPy ndarray, with a few small additions to make them easier to work with. Like a
NumPy recarray, you can access the fields with attributes; you can even access (but not set) computed attributes like
.variance. A view will also return an accumulator instance if you select a single item. You can set a view’s contents
with a stacked array, and each item in the stack will be used for the (computed) values that a normal constructor
would take. For example, WeighedMean can take an array with a final dimension four long, with sum_of_weights,
sum_of_weights_squared, value, and variance elements, even though several of these values are computed from
the internal representation.

6.3. Views 23

boost_histogram

24 Chapter 6. Accumulators

CHAPTER

SEVEN

USING TRANSFORMS

The boost-histogram library provides a powerful transform system on Regular axes that allows you to provide a func-
tional form for the conversion between a regular spacing and the actual bin edges. The following transforms are built
in:

• bh.axis.transform.sqrt: A square root transform

• bh.axis.transform.log: A logarithmic transform

• bh.axis.transform.Pow(power) Raise to a specified power (power=0.5 is identical to sqrt)

There is also a flexible bh.axis.transform.Function, which allows you to specify arbitrary conversion functions
(detailed below).

7.1 Simple custom transforms

The Function transform takes two ctypes double(double) function pointers, a forward transform and a inverse
transform. An object that provides a ctypes function pointer through a .ctypes attribute is supported, as well. As an
example, let’s look at how one would recreate the log transform using several different methods:

7.1.1 Pure Python

You can directly cast a python callable to a ctypes pointer, and use that. However, you will call Python every time
you interact with the transformed axis, and this will be 15-90 times slower than a compiled method, like bh.axis.
transform.log. In most cases, a Variable axis will be faster.

import ctypes

ftype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)

Pure Python (15x slower)
bh.axis.Regular(

10, 1, 4, transform=bh.axis.transform.Function(ftype(math.log), ftype(math.exp))
)

Pure Python: NumPy (90x slower)
bh.axis.Regular(

10, 1, 4, transform=bh.axis.transform.Function(ftype(np.log), ftype(np.exp))
)

You can create a Variable axis from the edges of this axis; often that will be faster.

25

boost_histogram

You can also use transform=ftype and just directly provide the functions; this provides nicer reprs, but is still not
picklable because ftype is a generated and not picklable; see below for a way to make this picklable. You can also
specify name="..." to customize the repr explicitly.

7.1.2 Using Numba

If you have the numba library installed, and your transform is reasonably simple, you can use the @numba.cfunc
decorator to create a callable that will run directly through the C interface. This is just as fast as the compiled version
provided!

import numba

@numba.cfunc(numba.float64(numba.float64))
def exp(x):

return math.exp(x)

@numba.cfunc(numba.float64(numba.float64))
def log(x):

return math.log(x)

bh.axis.Regular(10, 1, 4, transform=bh.axis.transform.Function(log, exp))

7.1.3 Manual compilation

You can also get a ctypes pointer from the usual place: a library. Let’s say you have the following mylib.c file:

#include <math.h>

double my_log(double value) {
return log(value);

}

double my_exp(double value) {
return exp(value);

}

And you compile it with:

gcc mylib.c -shared -o mylib.so

You can now use it like this:

import ctypes

ftype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)

mylib = ctypes.CDLL("mylib.so")

my_log = ctypes.cast(mylib.my_log, ftype)
(continues on next page)

26 Chapter 7. Using Transforms

boost_histogram

(continued from previous page)

my_exp = ctypes.cast(mylib.my_exp, ftype)

bh.axis.Regular(10, 1, 4, transform=bh.axis.transform.Function(my_log, my_exp))

Note that you do actually have to cast it to the correct function type; just setting argtypes and restype does not work.

7.2 Picklable custom transforms

The above examples to not support pickling, since ctypes pointers (or pointers in general) are not picklable. However,
the Function transform supports a convert= keyword argument that takes the two provided objects and converts
them to ctypes pointers. So if you can supply a pair of picklable objects and a conversion function, you can make a
fully picklable transform. A few common cases are given below.

7.2.1 Pure Python

This is the easiest example; as long as your Python function is picklable, all you need to do is move the ctypes call into
the convert function. You need a little wrapper function to make it picklable:

import ctypes, math

We need a little wrapper function only because ftype is not directly picklable
def convert_python(func):

ftype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
return ftype(func)

bh.axis.Regular(
10,
1,
4,
transform=bh.axis.transform.Function(math.log, math.exp, convert=convert_python),

)

That’s it.

7.2.2 Using Numba

The same procedure works for numba decorators. NumPy only supports functions, not builtins like math.log, so if
you want to pass those, you’ll need to wrap them in a lambda function or add a bit of logic to the convert function.
Here are your options:

import numba, math

def convert_numba(func):
return numba.cfunc(numba.double(numba.double))(func)

(continues on next page)

7.2. Picklable custom transforms 27

boost_histogram

(continued from previous page)

Built-ins and ufuncs need to be wrapped (numba can't read a signature)
User functions would not need the lambda
bh.axis.Regular(

10,
1,
4,
transform=bh.axis.transform.Function(

lambda x: math.log(x), lambda x: math.exp(x), convert=convert_numba
),

)

Note that numba.cfunc does not work on its own builtins, but requires a user function. Since with the exception of the
simple example I’m showing here that is already available directly in boost-histogram, you will probably be composing
your own functions out of more than one builtin operation, you generally will not need the lambda here.

7.2.3 Manual compilation

You can use strings to look up functions in the shared library:

def lookup(name):
mylib = ctypes.CDLL("mylib.so")
function = getattr(mylib, name)
return ctypes.cast(function, ftype)

bh.axis.Regular(
10, 1, 4, transform=bh.axis.transform.Function("my_log", "my_exp", convert=lookup)

)

28 Chapter 7. Using Transforms

CHAPTER

EIGHT

INDEXING

Boost-histogram implements the UHI indexing protocol. You can read more about it on the UHI Indexing page.

8.1 Boost-histogram specific details

Boost-histogram implements bh.loc, builtins.sum, bh.rebin, bh.underflow, and bh.overflow from the UHI
spec. A bh.tag.at locator is provided as well, which simulates the Boost.Histogram C++ .at() indexing using the
UHI locator protocol.

Boost-histogram allows “picking” using lists, similar to NumPy. If you select with multiple lists, boost-histogram
instead selects per-axis, rather than group-selecting and reducing to a single axis, like NumPy does. You can use
bh.loc(...) inside these lists.

Example:

h = bh.histogram(
bh.axis.Regular(10, 0, 1),
bh.axis.StrCategory(["a", "b", "c"]),
bh.axis.IntCategory([5, 6, 7]),

)

minihist = h[:, [bh.loc("a"), bh.loc("c")], [0, 2]]

Produces a 3D histgoram with Regular(10, 0, 1) x StrCategory(["a", "c"]) x␣
→˓IntCategory([5, 7])

This feature is considered experimental in boost-histogram 1.1.0. Removed bins are not added to the overflow bin
currently.

29

https://uhi.readthedocs.io/en/latest/indexing.html

boost_histogram

30 Chapter 8. Indexing

CHAPTER

NINE

PLOTTING

Boost-histogram does not contain plotting functions - this is outside of the scope of the project, which is histogram
filling and manipulation. However, it does follow PlottableProtocol. Any plotting library that accepts an object
that follows the PlottableProtocol can plot boost-histogram objects.

Read about the PlottableProtocol in the UHI plotting page.

31

https://uhi.readthedocs.io/en/latest/plotting.html

boost_histogram

32 Chapter 9. Plotting

CHAPTER

TEN

ANALYSES EXAMPLES

10.1 Bool and category axes

Taken together, the flexibility in axes and the tools to easily sum over axes can be applied to transform the way you
approach analysis with histograms. For example, let’s say you are presented with the following data in a 3xN table:

Data Details
value
is_valid True or False
run_number A collection of integers

In a traditional analysis, you might bin over value where is_valid is True, and then make a collection of histograms,
one for each run number. With boost-histogram, you can make a single histogram, and use an axis for each:

value_ax = bh.axis.Regular(100, -5, 5)
bool_ax = bh.axis.Integer(0, 2, underflow=False, overflow=False)
run_number_ax = bh.axis.IntCategory([], growth=True)

Now, you can use these axes to create a single histogram that you can fill. If you want to get a histogram of all run
numbers and just the True is_valid selection, you can use a sum:

h1 = hist[:, True, sum]

You can expand this example to any number of dimensions, boolean flags, and categories.

33

boost_histogram

34 Chapter 10. Analyses examples

CHAPTER

ELEVEN

NUMPY COMPATIBILITY

11.1 Histogram conversion

11.1.1 Accessing the storage array

You can access the storage of any Histogram using .view(), see Histogram.

11.1.2 NumPy tuple output

You can directly convert a histogram into the tuple of outputs that np.histogram*would give you using .to_numpy()
or .to_numpy(flow=True) on any histogram. This returns edges[0], edges[1], ..., values, and the edges
are NumPy-style (upper edge inclusive).

11.2 NumPy adaptors

You can use boost-histogram as a drop in replacement for NumPy histograms. All three histogram functions (bh.
numpy.histogram, bh.numpy.histgoram2d, and bh.numpy.histogramdd) are provided. The syntax is identical,
though boost-histogram adds three new keyword-only arguments; storage= to select the storage, histogram=bh.
Histogram to produce a boost-histogram instead of a tuple, and threads=N to select a number of threads to fill with.

11.2.1 1D histogram example

If you try the following in an IPython session, you will get:

import numpy as np
import boost_histogram as bh

norm_vals = np.concatenate(
[

np.random.normal(loc=5, scale=1, size=1_000_000),
np.random.normal(loc=2, scale=0.2, size=200_000),
np.random.normal(loc=8, scale=0.2, size=200_000),

]
)

%%timeit
bins, edges = np.histogram(norm_vals, bins=100, range=(0, 10))

35

boost_histogram

17.4 ms ± 2.64 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

Of course, you then are either left on your own to compute centers, density, widths, and more, or in some cases you
can change the computation call itself to add density=, or use the matching function inside Matplotlib, and the API
is different if you want 2D or ND histograms. But if you already use NumPy histograms and you really don’t want to
rewrite your code, boost-histogram has adaptors for the three histogram functions in NumPy:

%%timeit
bins, edges = bh.numpy.histogram(norm_vals, bins=100, range=(0, 10))

7.3 ms ± 55.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

This is only a hair slower than using the raw boost-histogram API, and is still a nice performance boost over NumPy.
You can even use the NumPy syntax if you want a boost-histogram object later:

hist = bh.numpy.histogram(norm_vals, bins=100, range=(0, 10), histogram=bh.Histogram)

You can later get a NumPy style output tuple from a histogram object:

bins, edges = hist.to_numpy()

So you can transition your code slowly to boost-histogram.

11.2.2 2D Histogram example

data = np.random.multivariate_normal((0, 0), ((1, 0), (0, 0.5)), 10_000_000).T.copy()

We can check the performance against NumPy again; NumPy does not do well with regular spaced bins in more than
1D:

%%timeit
np.histogram2d(*data, bins=(400, 200), range=((-2, 2), (-1, 1)))

1.31 s ± 17.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%%timeit
bh.numpy.histogram2d(*data, bins=(400, 200), range=((-2, 2), (-1, 1)))

101 ms ± 117 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

For more than one dimension, boost-histogram is more than an order of magnitude faster than NumPy for regular spaced
binning. Although optimizations may be added to boost-histogram for common axes combinations later, in 0.6.1, all
axes combinations share a common code base, so you can expect at least this level of performance regardless of the
axes types or number of axes! Threaded filling can give you an even larger performance boost if you have multiple
cores and a large fill to perform.

36 Chapter 11. NumPy compatibility

CHAPTER

TWELVE

SUBCLASSING (ADVANCED)

Subclassing boost-histogram components is supported, but requires a little extra care to ensure the subclasses do not
return un-wrapped boost-histogram components when a subclassed version is available. The issue is that various
actions make the C++ -> Python transition over again, such as using .project(). For example, let’s say you have a
MyHistogram and a MyRegular. If you use project(0), that needs to also return a MyRegular, but it is reconverting
the return value from C++ to Python, so it has to somehow know that MyRegular is the right axis subclass to select
from for MyHistogram. This is accomplished with families.

When you subclass, you will need to add a family. Any object can be used - the module for your library is a good choice
if you only have one “family” of histograms. Boost-histogram uses boost_histogram, Hist uses hist. You can use
anything you want, though; a custom tag object like MY_FAMILY = object() works well too. It just has to support
is, and be the exact same object on all your subclasses.

import boost_histogram as bh
import my_package

class Histogram(bh.Histogram, family=my_package):
...

class Regular(bh.axis.Regular, family=my_package):
...

If you only override Histogram, you can leave off the family= argument, or set it to None. It will generate a private
object() in this case. You must add an explicit family to Histogram if you subclass any further components.

If you use Mixins, special care needs to be taken if you need a left-acting Mixin, since class keywords are handled via
super() left to right. This is a Mixin that will work on either side:

class AxisMixin:
def __init_subclass__(cls, **kwargs):

super().__init_subclass__(**kwargs) # type: ignore

Mixins are recommended if you want to provide functionality to a collection of different subclasses, like Axis.

There are customization hooks provided for subclasses as well. self._generate_axes_() is called to produce an
AxesTuple, so you can override that if you customize AxesTuple.

_import_bh_ and _export_bh_ are called when converting an object between histogram libraries. cls.
_export_bh_(self) is called from the outgoing class (being converted from), and self._import_bh_() is called
afterward on the incoming class (being converted to). So if h1 is an instance of H1, and H2 is the new class, then
H2(h1) calls H1._export_bh_(h2) and then h2._import_bh_() before returning h2. The internal repr building
for axes is a list produced by _repr_args_ representing each item in the repr.

37

boost_histogram

38 Chapter 12. Subclassing (advanced)

CHAPTER

THIRTEEN

COMPARISON WITH BOOST.HISTOGRAM

boost-histogram was based on the C++ library Boost.Histogram. In most ways, it mimics the spirit of this library;
if you learn to use one, you probably can use the other. There are a few differences, however, mostly around adhering
to Python conventions:

13.1 Removals

There are a few parts of the Boost.Histogram interface that are not bound. They are:

The call operator
This is provided in C++ to allow single item filling, and was designed to mimic the accumulator syntax used
elsewhere in Boost. It also works nicely with some STL algorithms. It was not provided in Python because using
call to modify an object is not common in Python, using call makes duck-typing more dangerous, and single-item
fills are not encouraged in Python due to poor performance. The .fill method from Boost.Histogram 1.72 is
bound, however - this provides fast fills without the drawbacks. If you want to fill with a single item, Python’s
.fill does support single item fills.

Histogram make functions
These functions, such as make_histogram and make_weighted_histogram, are provided in Boost.Histogram
to make the template syntax easier in C++14. In C++17, they are replaced by directly using the histogram
constructor; the Python bindings are not limited by old templating syntax, and choose to only provide the newer
spelling.

Custom components
Many components in Boost.Histogram are configurable or replaceable at compile time; since Python code is
precompiled, a comprehensive but static subset was selected for the Python bindings.

13.2 Changes

Naming
The bindings follow modern Python conventions, with CamelCase for classes, etc. The Boost.Histogram library
follows Boost conventions.

Serialization
The Python bindings use a pickle-based binary serialization, so cannot read files saved in C++ using
Boost.Serialize.

Properties
Many methods in C++ are properties in Python. .axis(i) is replaced with .axes[i].

39

boost_histogram

Indexing
The Python bindings use standard Python indexing for selection and setting. You can recover the functionality
of .at(i) at endpoints with bh.tag.at(i).

Renames
The .rank() method is replaced by the .ndim property to match the common NumPy spelling.

13.3 Additions

Unified Histogram Indexing
The Python bindings support UHI, a proposal to unify and simplify histogram indexing in Python.

Custom transforms
Custom transforms are possible using Numba or a C pointer. In Boost.Histogram, you can use templating to
make arbitrary transforms, so a run time transform is not as necessary (but may be added).

NumPy compatibility
The Python bindings do several things to simplify NumPy compatibility.

40 Chapter 13. Comparison with Boost.Histogram

CHAPTER

FOURTEEN

SIMPLE EXAMPLE

Let’s try some basic functionality of boost-histogram:

[1]: import numpy as np

import boost_histogram as bh

[2]: vals = np.random.normal(size=(2, 1_000_000))

[3]: hist = bh.Histogram(
bh.axis.Regular(10, 0, 10, metadata="x", transform=bh.axis.transform.sqrt),
bh.axis.Regular(10, 0, 1, circular=True, metadata="y"),
storage=bh.storage.Int64(),

)
hist

[3]: Histogram(
Regular(10, 0, 10, metadata='x', transform=sqrt),
Regular(10, 0, 1, circular=True, metadata='y'),
storage=Int64())

This fills the histogram

[4]: hist.fill(*vals)

[4]: Histogram(
Regular(10, 0, 10, metadata='x', transform=sqrt),
Regular(10, 0, 1, circular=True, metadata='y'),
storage=Int64()) # Sum: 499682.0 (1000000.0 with flow)

Let’s just take a quick look at the bin contents:

[5]: print(hist.view())

[[3955 3992 3972 3948 3930 3987 4073 3982 3878 4073]
[11519 11675 11560 11528 11612 11575 11476 11643 11573 11603]
[16197 16087 16261 16043 15775 15912 16067 16010 15973 15998]
[12843 12956 12855 12912 12870 12940 12962 12891 12752 13073]
[4807 4952 4844 4859 4869 4788 4657 4931 4775 4874]
[636 618 598 608 633 644 603 635 611 645]
[14 18 20 13 12 21 10 18 15 22]
[0 0 0 0 1 0 0 0 0 0]

(continues on next page)

41

boost_histogram

(continued from previous page)

[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]]

42 Chapter 14. Simple Example

CHAPTER

FIFTEEN

ROOT FILE FORMAT EXAMPLE

To run this example, you will need uproot, which is another SciKit-HEP library.

[1]: from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import uproot

import boost_histogram as bh

demo_file = Path("demo_uproot_file.root")

ROOT is a modular scientific software toolkit used in High Energy Physics. (HEP) The ROOT file format is used to
store almost all HEP data. This notebook will illustrate one method for converting to/from the ROOT file format using
uproot, a Python implementation of a ROOT file reader and writer.

For more complicated histograms, you may need Aghast and PyROOT, but that is a much heaver dependency, and is
covered in a separate tutorial.

Start by making a 1D histogram:

[2]: h = bh.Histogram(bh.axis.Regular(15, -3, 3))
h.fill(np.random.normal(size=1_000_000))

[2]: Histogram(Regular(15, -3, 3), storage=Double()) # Sum: 997352.0 (1000000.0 with flow)

[3]: with uproot.recreate(demo_file) as root_file:
Uproot automatically converts histograms
root_file["hist"] = h

If you want to save and load the ROOT histogram, use uproot to read and write:

[4]: with uproot.open(demo_file) as root_file_2:
uproot_hist = root_file_2["hist"]

print(uproot_hist)

<TH1D (version 3) at 0x7fa9b83ffd00>

This uproot histogram can be converted directly to boost_histogram:

[5]: h = bh.Histogram(uproot_hist)
plt.bar(h.axes[0].centers, h.values(), width=h.axes[0].widths);

43

https://root.cern/
https://scikit-hep.org/scikit-hep-tutorials
https://github.com/scikit-hep/uproot

boost_histogram

We could use a Weight() storage and read both allvalues and allvariances in, as well, since ROOT histograms
can sometimes have this enabled.

Finally, let’s clean up after ourselves:

[6]: if demo_file.is_file():
demo_file.unlink()

44 Chapter 15. ROOT file format example

CHAPTER

SIXTEEN

THREADED FILLS

[1]: from concurrent.futures import ThreadPoolExecutor
from functools import reduce
from operator import add

import numpy as np
from numpy.testing import assert_array_equal

import boost_histogram as bh

This notebook explores parallel filling by hand (not using the threads= argument).

[2]: hist_linear = bh.Histogram(bh.axis.Regular(100, 0, 1))
hist_atomic = bh.Histogram(bh.axis.Regular(100, 0, 1), storage=bh.storage.AtomicInt64())

vals = np.random.rand(10_000_000)
hist_answer = hist_linear.fill(vals).copy()

This is a traditional fill.

[3]: %%timeit
hist_linear.reset()
hist_linear.fill(vals)
assert_array_equal(hist_answer, hist_linear)

25.5 ms ± 774 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

This is a single threaded atomic fill.

[4]: %%timeit
hist_atomic.reset()
hist_atomic.fill(vals)
assert_array_equal(hist_answer, hist_atomic)

59.9 ms ± 2.19 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

This is a threaded fill (storage not threadsafe, so will get the wrong result; just for comparison)

This is a threaded fill, this time with atomics. It may not be faster, but is useful in situations where you are filling from
multiple places in your code.

[5]: %%timeit
hist_atomic.reset()

(continues on next page)

45

boost_histogram

(continued from previous page)

threads = 4
with ThreadPoolExecutor(threads) as pool:

for chunk in np.array_split(vals, threads):
pool.submit(hist_atomic.fill, chunk)

assert_array_equal(hist_answer, hist_atomic)

61.2 ms ± 1.57 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

This makes four separate histograms, then fills them and adds at the end.

[6]: def fun(x):
hist = bh.Histogram(bh.axis.Regular(100, 0, 1))
return hist.fill(x)

[7]: %%timeit
threads = 4
with ThreadPoolExecutor(threads) as pool:

results = pool.map(fun, np.array_split(vals, threads))
hist_quad = reduce(add, results)
assert_array_equal(hist_answer, hist_quad)

8.12 ms ± 90 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

The expense of creating the histogram and summing them must be significantly less than the cost of filling for this to
be faster.

46 Chapter 16. Threaded Fills

CHAPTER

SEVENTEEN

PERFORMANCE COMPARISON

We will compare boost-histogram to numpy.

[1]: import numpy as np
from numpy.testing import assert_allclose

import boost_histogram as bh

[2]: import os

threads = os.cpu_count() // 2
print(f"threads: {threads}")

threads: 8

17.1 Testing setup

This is just a simple 1D and 2D dataset to use for performance runs. The testing setup is the same as “MBP” in this
post, a dual-core MacBook Pro 2015.

[3]: bins = (100, 100)
ranges = ((-3, 3), (-3, 3))
bins = np.asarray(bins).astype(np.int64)
ranges = np.asarray(ranges).astype(np.float64)

edges = (
np.linspace(*ranges[0, :], bins[0] + 1),
np.linspace(*ranges[1, :], bins[1] + 1),

)

[4]: np.random.seed(42)
vals = np.random.normal(size=[2, 10_000_000]).astype(np.float32)
vals1d = np.random.normal(size=[10_000_000]).astype(np.float32)

47

https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/
https://iscinumpy.gitlab.io/post/histogram-speeds-in-python/

boost_histogram

17.1.1 Traditional 1D NumPy Histogram

This is reasonably optimized; it should provide good performance.

[5]: answer, e = np.histogram(vals1d, bins=bins[0], range=ranges[0])

[6]: %%timeit
h, _ = np.histogram(vals1d, bins=bins[0], range=ranges[0])
assert_allclose(h, answer, atol=1)

74.5 ms ± 2.37 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1.2 Boost histogram 1D

[7]: %%timeit
hist = bh.Histogram(bh.axis.Regular(bins[0], *ranges[0]), storage=bh.storage.Int64())
hist.fill(vals1d)
assert_allclose(hist, answer, atol=1)

41.6 ms ± 712 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1.3 Boost histogram 1D NumPy clone

[8]: %%timeit
h, _ = bh.numpy.histogram(vals1d, bins=bins[0], range=ranges[0])
assert_allclose(h, answer, atol=1)

43.1 ms ± 769 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1.4 Boost histogram in 1D, threaded

[9]: %%timeit
hist = bh.Histogram(bh.axis.Regular(bins[0], *ranges[0]), storage=bh.storage.Int64())

hist.fill(vals1d, threads=threads)
assert_allclose(hist, answer, atol=1)

13.3 ms ± 153 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

17.1.5 Boost histogram 1D NumPy clone, threaded

[10]: %%timeit
h, _ = bh.numpy.histogram(vals1d, bins=bins[0], range=ranges[0], threads=threads)
assert_allclose(h, answer, atol=1)

13.8 ms ± 238 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

48 Chapter 17. Performance Comparison

boost_histogram

17.1.6 Traditional 2D NumPy histogram

Not as well optimized for regular filling.

[11]: answer2, *ledges = np.histogram2d(*vals, bins=bins, range=ranges)

[12]: %%timeit
H, *ledges = np.histogram2d(*vals, bins=bins, range=ranges)
assert_allclose(H, answer2, atol=1)

874 ms ± 22.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

17.1.7 Boost histogram in 2D

[13]: %%timeit
hist = bh.Histogram(

bh.axis.Regular(bins[0], *ranges[0]), bh.axis.Regular(bins[1], *ranges[1])
)
hist.fill(*vals)
assert_allclose(hist, answer2, atol=1)

77.6 ms ± 615 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1.8 Boost histogram 2D NumPy clone

[14]: %%timeit
H, *ledges = bh.numpy.histogram2d(*vals, bins=bins, range=ranges)
assert_allclose(H, answer2, atol=1)

84.7 ms ± 2.78 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1.9 Boost histogram in 2D, threaded

[15]: %%timeit
hist = bh.Histogram(

bh.axis.Regular(bins[0], *ranges[0]), bh.axis.Regular(bins[1], *ranges[1])
)

hist.fill(*vals, threads=threads)
assert_allclose(hist, answer2, atol=1)

28.7 ms ± 708 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

17.1. Testing setup 49

boost_histogram

17.1.10 Boost histogram 2D NumPy clone, threaded

[16]: %%timeit
H, *ledges = bh.numpy.histogram2d(*vals, bins=bins, range=ranges, threads=threads)
assert_allclose(H, answer2, atol=1)

29.6 ms ± 503 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

50 Chapter 17. Performance Comparison

CHAPTER

EIGHTEEN

XARRAY EXAMPLE

To run this example, an environment.yml similar to this one could be used:

name: bh_xhistogram
channels:
- conda-forge

dependencies:
- python==3.8
- boost-histogram
- xhistogram
- matplotlib
- netcdf4

[1]: import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from xhistogram.xarray import histogram as xhistogram

import boost_histogram as bh

Let’s look at using boost-histogram to imitate the xhistogram package by reading and producing xarrays. As a reminder,
xarray is a sort of generalized Pandas library, supporting ND labeled and indexed data.

18.1 Simple 1D example

We will start with the first example from the xhistogram docs:

[2]: da = xr.DataArray(np.random.randn(100, 30), dims=["time", "x"], name="foo")
bins = np.linspace(-4, 4, 20)

51

boost_histogram

18.1.1 xhistogram

And, this is what historamming and plotting looks like:

[3]: h = xhistogram(da, bins=[bins])
display(h)
h.plot()
h is an xarray

<xarray.DataArray 'histogram_foo' (foo_bin: 19)>
array([2, 1, 2, 22, 56, 135, 234, 375, 453, 496, 456, 346, 226,

96, 65, 25, 7, 3, 0])
Coordinates:
* foo_bin (foo_bin) float64 -3.789 -3.368 -2.947 -2.526 ... 2.947 3.368 3.789

18.1.2 boost-histogram (direct usage)

Let’s first just try this by hand, to see how it works. This will not return an xarray, etc.

[4]: bh_bins = bh.axis.Regular(19, -4, 4)
bh_hist = bh.Histogram(bh_bins).fill(np.asarray(da).flatten())
plt.plot(bh_hist.axes[0].centers, bh_hist.values());

52 Chapter 18. XArray Example

boost_histogram

18.1.3 boost-histogram (adapter function)

Now, let’s make an adaptor for boost-histogram.

[5]: def bh_xhistogram(*args, bins):
Convert bins to boost-histogram axes first
prepare_bins = (bh.axis.Variable(b) for b in bins)
h = bh.Histogram(*prepare_bins)

We need flat NP arrays for filling
prepare_fill = (np.asarray(a).flatten() for a in args)
h.fill(*prepare_fill)

Now compute the xarray output.
return xr.DataArray(

h.values(),
name="_".join(a.name for a in args) + "_histogram",
coords=[

(f"{a.name}_bin", arr.flatten(), a.attrs)
for a, arr in zip(args, h.axes.centers)

],
)

[6]: h = bh_xhistogram(da, bins=[bins])
display(h)
h.plot();

<xarray.DataArray 'foo_histogram' (foo_bin: 19)>
array([2., 1., 2., 22., 56., 135., 234., 375., 453., 496., 456.,

346., 226., 96., 65., 25., 7., 3., 0.])
Coordinates:
* foo_bin (foo_bin) float64 -3.789 -3.368 -2.947 -2.526 ... 2.947 3.368 3.789

18.1. Simple 1D example 53

boost_histogram

More features

Let’s add a few more features to our function defined above. * Let’s allow bins to be a list of axes or even a completely
prepared histogram; this will allow us to take advantage of boost-histogram features later. * Let’s add a weights keyword
so we can do weighted histograms as well.

[7]: def bh_xhistogram(*args, bins, weights=None):
"""
bins is either a histogram, a list of axes, or a list of bins
"""

if isinstance(bins, bh.Histogram):
h = bins

else:
prepare_bins = (

b if isinstance(b, bh.axis.Axis) else bh.axis.Variable(b) for b in bins
)
h = bh.Histogram(*prepare_bins)

prepare_fill = (np.asarray(a).flatten() for a in args)

if weights is None:
h.fill(*prepare_fill)

else:
prepared_weights, *_ = xr.broadcast(weights, *args)
h.fill(*prepare_fill, weight=np.asarray(prepared_weights).flatten())

return xr.DataArray(
h.values(),
name="_".join(a.name for a in args) + "_histogram",
coords=[

(f"{a.name}_bin", arr.flatten(), a.attrs)
for a, arr in zip(args, h.axes.centers)

],
(continues on next page)

54 Chapter 18. XArray Example

boost_histogram

(continued from previous page)

)

18.2 2D example

This also comes from the xhistogram docs.

[8]: # Read WOA using opendap
Temp_url = (

"http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/temp"
)
Salt_url = (

"http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/salt"
)
Oxy_url = (

"http://apdrc.soest.hawaii.edu:80/dods/public_data/WOA/WOA13/5_deg/annual/doxy"
)

ds = xr.merge(
[

xr.open_dataset(Temp_url).tmn.load(),
xr.open_dataset(Salt_url).smn.load(),
xr.open_dataset(Oxy_url).omn.load(),

]
)

[9]: sbins = np.arange(31, 38, 0.025)
tbins = np.arange(-2, 32, 0.1)

18.2.1 xhistogram

[10]: hTS = xhistogram(ds.smn, ds.tmn, bins=[sbins, tbins])
np.log10(hTS.T).plot(levels=31)

/usr/local/Caskroom/miniconda/base/envs/xtest/lib/python3.8/site-packages/xarray/core/
→˓computation.py:601: RuntimeWarning: divide by zero encountered in log10
result_data = func(*input_data)

[10]: <matplotlib.collections.QuadMesh at 0x7f84c920b130>

18.2. 2D example 55

boost_histogram

18.2.2 boost-histogram

We could hand in the same bin definitions, but let’s use boost-histogram axes instead:

[11]: sax = bh.axis.Regular(250, 31, 38)
tax = bh.axis.Regular(340, -2, 32)

hTS = bh_xhistogram(ds.smn, ds.tmn, bins=[sax, tax])
np.log10(hTS.T).plot(levels=31)

[11]: <matplotlib.collections.QuadMesh at 0x7f8528c132b0>

56 Chapter 18. XArray Example

boost_histogram

Speed comparson

[12]: %%timeit
hTS = xhistogram(ds.smn, ds.tmn, bins=[sbins, tbins])

17.6 ms ± 508 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

[13]: %%timeit
hTS = bh_xhistogram(ds.smn, ds.tmn, bins=[sax, tax])

4.7 ms ± 245 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Weighted histogram

Let’s try a more complex example from the docs; the dVol weights one:

[14]: dz = np.diff(ds.lev)
dz = np.insert(dz, 0, dz[0])
dz = xr.DataArray(dz, coords={"lev": ds.lev}, dims="lev")

dVol = dz * (5 * 110e3) * (5 * 110e3 * np.cos(ds.lat * np.pi / 180))

hTSw = bh_xhistogram(ds.smn, ds.tmn, bins=[sax, tax], weights=dVol)
np.log10(hTSw.T).plot(levels=31, vmin=11.5, vmax=16, cmap="brg")

[14]: <matplotlib.collections.QuadMesh at 0x7f84b821c940>

18.2. 2D example 57

boost_histogram

58 Chapter 18. XArray Example

CHAPTER

NINETEEN

USING BOOST-HISTOGRAM

[1]: import functools
import operator

import matplotlib.pyplot as plt
import numpy as np

import boost_histogram as bh

19.1 1: Basic 1D histogram

Let’s start with the basics. We will create a histogram using boost-histogram and fill it.

19.1.1 1.1: Data

Let’s make a 1d dataset to run on.

[2]: data1 = np.random.normal(3.5, 2.5, size=1_000_000)

Now, let’s make a histogram

[3]: hist1 = bh.Histogram(bh.axis.Regular(40, -2, 10))

[4]: hist1.fill(data1)

[4]: Histogram(Regular(40, -2, 10), storage=Double()) # Sum: 981542.0 (1000000.0 with flow)

You can see that the histogram has been filled. Let’s explicitly check to see how many entries are in the histogram:

[5]: hist1.sum()

[5]: 981542.0

What happened to the missing items? They are in the underflow and overflow bins:

[6]: hist1.sum(flow=True)

[6]: 1000000.0

59

boost_histogram

Like ROOT, we have overflow bins by default. We can turn them off, but they enable some powerful things like
projections.

Let’s plot this (Hist should make this easier):

[7]: plt.bar(hist1.axes[0].centers, hist1.values(), width=hist1.axes[0].widths);

Note: you can select the axes before or after calling .centers; this is very useful for ND histograms.

From now on, let’s be lazy

[8]: plothist = lambda h: plt.bar(*h.axes.centers, h.values(), width=h.axes.widths[0]);

Aside: here’s step. The edges are quite ugly for us, just like it is for numpy. Or anyone.

[9]: plt.step(hist1.axes[0].edges[:-1], hist1.values(), where="post");

Recent versions of matplotlib support .stairs, which was designed to work well with histograms:

[10]: plt.stairs(hist1.values(), hist1.axes[0].edges);

60 Chapter 19. Using boost-histogram

boost_histogram

No plotting is built in, but the data is easy to access.

19.2 2: Drop-in replacement for NumPy

To start using this yourself, you don’t even need to change your code. Let’s try the numpy adapters.

[11]: bins2, edges2 = bh.numpy.histogram(data1, bins=10)

[12]: b2, e2 = np.histogram(data1, bins=10)

[13]: bins2 - b2

[13]: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int64)

[14]: e2 - edges2

[14]: array([0.00000000e+00, 8.88178420e-16, 8.88178420e-16, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 1.77635684e-15, 3.55271368e-15,
0.00000000e+00, 0.00000000e+00, -1.77635684e-15])

Not bad! Let’s start moving to the boost-histogram API, so we can use our little plotting function:

[15]: hist2 = bh.numpy.histogram(data1, bins="auto", histogram=bh.Histogram)
plothist(hist2);

19.2. 2: Drop-in replacement for NumPy 61

boost_histogram

Now we can move over to boost-histogram one step at a time! Just to be complete, we can also go back to a NumPy
tuple from a Histogram object:

[16]: b2p, e2p = bh.numpy.histogram(data1, bins=10, histogram=bh.Histogram).to_numpy()
b2p == b2

[16]: array([True, True, True, True, True, True, True, True, True,
True])

19.3 3: More dimensions

The same API works for multiple dimensions.

[17]: hist3 = bh.Histogram(bh.axis.Regular(150, -1.5, 1.5), bh.axis.Regular(100, -1, 1))

[18]: def make_2D_data(*, mean=(0, 0), widths=(1, 1), size=1_000_000):
cov = np.asarray(widths) * np.eye(2)
return np.random.multivariate_normal(mean, cov, size=size).T

[19]: data3x = make_2D_data(mean=[-0.75, 0.5], widths=[0.2, 0.02])
data3y = make_2D_data(mean=[0.75, 0.5], widths=[0.2, 0.02])

From here on out, I will be using .reset() before a .fill(), just to make sure each cell in the notebook can be rerun.

[20]: hist3.reset()
hist3.fill(*data3x)
hist3.fill(*data3y)

[20]: Histogram(
Regular(150, -1.5, 1.5),
Regular(100, -1, 1),
storage=Double()) # Sum: 1905785.0 (2000000.0 with flow)

Again, let’s make plotting a little function:

62 Chapter 19. Using boost-histogram

boost_histogram

[21]: def plothist2d(h):
return plt.pcolormesh(*h.axes.edges.T, h.values().T)

This is transposed because pcolormesh expects it.

[22]: plothist2d(hist3);

Let’s try a 3D histogram

[23]: data3d = [np.random.normal(size=1_000_000) for _ in range(3)]

hist3d = bh.Histogram(
bh.axis.Regular(150, -5, 5),
bh.axis.Regular(100, -5, 5),
bh.axis.Regular(100, -5, 5),

)

hist3d.fill(*data3d)

[23]: Histogram(
Regular(150, -5, 5),
Regular(100, -5, 5),
Regular(100, -5, 5),
storage=Double()) # Sum: 1000000.0

Let’s project to the first two axes:

[24]: plothist2d(hist3d.project(0, 1));

19.3. 3: More dimensions 63

https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.pcolormesh.html#axes-pcolormesh-grid-orientation

boost_histogram

19.4 4: UHI

Let’s explore the boost-histogram UHI syntax. We will reuse the previous 2D histogram from part 3:

[25]: plothist2d(hist3);

I can see that I want y from 0.25 to 0.75, in data coordinates:

[26]: plothist2d(hist3[:, bh.loc(0.25) : bh.loc(0.75)]);

64 Chapter 19. Using boost-histogram

boost_histogram

What’s the contents of a bin?

[27]: hist3[100, 87]

[27]: 181.0

How about in data coordinates?

[28]: hist3[bh.loc(0.5), bh.loc(0.75)]

[28]: 181.0

Note: to get the coordinates manually:

hist3.axes[0].index(.5) == 100
hist3.axes[1].index(.75) == 87

How about a 1d histogram?

[29]: plothist(hist3[:, :: bh.sum])
plothist(hist3[:: bh.sum, :]);

Let’s look at one part and rebin:

19.4. 4: UHI 65

boost_histogram

[30]: plothist2d(hist3[: 50 : bh.rebin(2), 50 :: bh.rebin(2)]);

What is the value at (-.75, .5)?

[31]: hist3[bh.loc(-0.75), bh.loc(0.5)]

[31]: 1005.0

19.5 5: Understanding accumulators

Boost-histogram has several different storages; storages store accumulators. Let’s try making a profile.

[32]: mean = bh.accumulators.Mean()
mean.fill([0.3, 0.4, 0.5])

[32]: Mean(count=3, value=0.4, variance=0.01)

Here’s a quick example accessing the values:

[33]: print(
f"mean.count={mean.count} mean.value={mean.value:g} mean.variance={mean.variance:g}"

)

Python 3.8:
print(f"{mean.count=} {mean.value=} {mean.variance=}")

mean.count=3.0 mean.value=0.4 mean.variance=0.01

66 Chapter 19. Using boost-histogram

boost_histogram

19.6 6: Changing the storage

[34]: hist6 = bh.Histogram(bh.axis.Regular(10, 0, 10), storage=bh.storage.Mean())

[35]: hist6.fill([0.5] * 3, sample=[0.3, 0.4, 0.5])

[35]: Histogram(Regular(10, 0, 10), storage=Mean()) # Sum: Mean(count=3, value=0.4, variance=0.
→˓01)

[36]: hist6[0]

[36]: Mean(count=3, value=0.4, variance=0.01)

[37]: hist6.view()

[37]: MeanView(
[(3., 0.4, 0.02), (0., 0. , 0.), (0., 0. , 0.), (0., 0. , 0.),
(0., 0. , 0.), (0., 0. , 0.), (0., 0. , 0.), (0., 0. , 0.),
(0., 0. , 0.), (0., 0. , 0.)],

dtype=[('count', '<f8'), ('value', '<f8'), ('_sum_of_deltas_squared', '<f8')])

[38]: hist6.view().value

[38]: array([0.4, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.])

[39]: hist6.view().variance

[39]: array([0.01, -0. , -0. , -0. , -0. , -0. , -0. , -0. , -0. ,
-0.])

19.7 7: Making a density histogram

Let’s try to make a density histogram like NumPy’s.

[40]: bins = [
-10,
-7,
-4,
-3,
-2,
-1,
-0.75,
-0.5,
-0.25,
0,
0.25,
0.5,
0.75,
1,
2,
3,

(continues on next page)

19.6. 6: Changing the storage 67

boost_histogram

(continued from previous page)

4,
7,
10,

]
d7, e7 = np.histogram(data1 - 3.5, bins=bins, density=True)
plt.hist(data1 - 3.5, bins=bins, density=True);

Yes, it’s ugly. Don’t judge.

We don’t have a .density! What do we do? (note: density=True is supported if you do not return a bh object)

[41]: hist7 = bh.numpy.histogram(data1 - 3.5, bins=bins, histogram=bh.Histogram)

widths = hist7.axes.widths
area = functools.reduce(operator.mul, hist7.axes.widths)

area

[41]: array([3. , 3. , 1. , 1. , 1. , 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 1. , 1. , 1. , 3. , 3.])

Yes, that does not need to be so complicated for 1D, but it’s general.

[42]: factor = np.sum(hist7.values())
view = hist7.values() / (factor * area)

[43]: plt.bar(hist7.axes[0].centers, view, width=hist7.axes[0].widths);

68 Chapter 19. Using boost-histogram

boost_histogram

19.8 8: Axis types

There are more axes types, and they all provide the same API in histograms, so they all just work without changes:

[44]: hist8 = bh.Histogram(
bh.axis.Regular(30, 1, 10, transform=bh.axis.transform.log),
bh.axis.Regular(30, 1, 10, transform=bh.axis.transform.sqrt),

)

[45]: hist8.reset()
hist8.fill(*make_2D_data(mean=(5, 5), widths=(5, 5)))

[45]: Histogram(
Regular(30, 1, 10, transform=log),
Regular(30, 1, 10, transform=sqrt),
storage=Double()) # Sum: 903807.0 (1000000.0 with flow)

[46]: plothist2d(hist8);

19.8. 8: Axis types 69

boost_histogram

19.9 9: And, circular, too!

[47]: hist9 = bh.Histogram(bh.axis.Regular(30, 0, 2 * np.pi, circular=True))
hist9.fill(np.random.uniform(0, np.pi * 4, size=300))

[47]: Histogram(Regular(30, 0, 6.28319, circular=True), storage=Double()) # Sum: 300.0

Now, the really complicated part, making a circular histogram:

[48]: ax = plt.subplot(111, polar=True)
plothist(hist9);

See the Scikit-HEP Developer introduction for a detailed description of best practices for developing Scikit-HEP pack-
ages.

70 Chapter 19. Using boost-histogram

https://scikit-hep.org/developer/intro

CHAPTER

TWENTY

CONTRIBUTING

20.1 Building from source

This repository has dependencies in submodules. Check out the repository like this:

git clone --recursive https://github.com/scikit-hep/boost-histogram.git
cd boost-histogram

git clone https://github.com/scikit-hep/boost-histogram.git
cd boost-histogram
git submodule update --init --depth 10

20.2 Setting up a development environment

20.2.1 Nox

The fastest way to start with development is to use nox. If you don’t have nox, you can use pipx run nox to run it
without installing, or pipx install nox. If you don’t have pipx (pip for applications), then you can install with with
pip install pipx (the only case were installing an application with regular pip is reasonable). If you use macOS,
then pipx and nox are both in brew, use brew install pipx nox.

To use, run nox. This will lint and test using every installed version of Python on your system, skipping ones that are
not installed. You can also run specific jobs:

$ nox -l # List all the defined sessions
$ nox -s lint # Lint only
$ nox -s tests-3.9 # Python 3.9 tests only
$ nox -s docs -- serve # Build and serve the docs
$ nox -s make_pickle # Make a pickle file for this version

Nox handles everything for you, including setting up an temporary virtual environment for each run.

71

boost_histogram

20.2.2 Pip

While developers often work in CMake, the “correct” way to develop a python package is in a virtual environment.
This is how you would set one up with Python’s built-in venv:

python3 -m venv .env
source ./.env/bin/activate
pip install -U pip
pip install -ve .[all]

You can set up a kernel for external Jupyter then deactivate your environment:

python -m ipykernel install --user --name boost-hist
deactivate

Now, you can run notebooks using your system JupyterLab, and it will list the environment as available!

To rebuild, rerun pip install -ve . from the environment, if the commit has changed, you will get a new build.
Due to the -e, Python changes do not require a rebuild.

20.2.3 CMake

CMake is common for C++ development, and ties nicely to many C++ tools, like IDEs. If you want to use it for
building, you can. Make a build directory and run CMake. If you have a specific Python you want to use, add
-DPYTHON_EXECUTABLE=$(which python) or similar to the CMake line. If you need help installing the latest CMake
version, visit this page; one option is to use pip to install CMake.

Note: Since setuptools uses a subdirectory called build, it is slightly better to avoid making your
CMake directory build as well. Also, you will often have multiple CMake directories (build-release,
build-debug, etc.), so avoiding the descriptive name build is not a bad idea.

You have three options for running code in python:

1. Run from the build directory (only works with some commands, like python -m pytest, and not others, like
pytest

2. Add the build directory to your PYTHONPATH environment variable

3. Set CMAKE_INSTALL_PREFIX to your site-packages and install (recommended for virtual environments).

Here is the recommendation for a CMake install:

python3 -m venv env_cmake
source ./env_cmake/bin/activate
pip install -r dev-requirements.txt
cmake -S . -B build-debug \

-GNinja \
-DCMAKE_INSTALL_PREFIX=$(python -c "import distutils.sysconfig; print(distutils.

→˓sysconfig.get_python_lib(plat_specific=False,standard_lib=False))")
cmake --build build-debug -j4
cmake --install build-debug # Option 3 only

Note that option 3 will require reinstalling if the python files change, while options 1-2 will not if you have a recent
version of CMake (symlinks are made).

This could be simplified if pybind11 supported the new CMake FindPython tools.

72 Chapter 20. Contributing

https://cliutils.gitlab.io/modern-cmake/chapters/intro/installing.html

boost_histogram

20.3 Testing

Run the unit tests (requires pytest and NumPy).

python3 -m pytest

For CMake, you can also use the test target from anywhere, or use python3 -m pytest or ctest from the build
directory.

The build requires setuptools_scm. The tests require numpy, pytest, and pytest-benchmark. pytest-sugar
adds some nice formatting.

20.4 Benchmarking

You can enable benchmarking with --benchmark-enable when running tests. You can also run explicit performance
tests with scripts/performance_report.py.

python3 -m pytest --benchmark-enable --benchmark-sort fullname

For example, if you want to benchmark before and after a change:

python3 -m pytest --benchmark-enable --benchmark-autosave
Make change
python3 -m pytest --benchmark-enable --benchmark-autosave

pytest-benchmark compare 0001 0002 --sort fullname --histogram

Note, while the histogram option (--histogram) is nice, it does require pygal and pygaljs to be installed. Feel free
to leave it off if not needed.

20.5 Formatting

Code should be well formatted; CI will check it and one of the authors can help reformat your code. If you want to
check it yourself, you should use pre-commit.

Just install pre-commit, probably using brew on macOS or pip on other platforms, then run:

pre-commit install

Now all changed files will be checked every time you git commit. You can check it yourself (even without installing
the hooks) using:

pre-commit run --all-files

We do not check check-manifest every time locally, since it is slow. You can trigger this manual check with:

pre-commit run --all-files --hook-stage manual check-manifest

Developers should update the pre-commit dependencies once in a while, you can do this automatically with:

pre-commit autoupdate

20.3. Testing 73

https://pre-commit.com
https://pre-commit.com/#install

boost_histogram

Note about skipping Docker

Pre-commit uses docker to ensure a consistent run of clang-format. If you do not want to install/run Docker,
you should use SKIP=docker-clang-formatwhen running pre-commit, and instead run clang-format
-style=file -i <files> yourself.

20.6 Clang-Tidy

To run Clang tidy, the following recipe should work. Files will be modified in place, so you can use git to monitor the
changes.

docker run --rm -v $PWD:/pybind11 -it silkeh/clang:10
apt-get update && apt-get install python3-dev
cmake -S pybind11/ -B build -DCMAKE_CXX_CLANG_TIDY="$(which clang-tidy);-fix"
cmake --build build

Remember to build single-threaded if applying fixes!

20.7 Include what you use

To run include what you use, install (brew install include-what-you-use on macOS), then run:

cmake -S . -B build-iwyu -DCMAKE_CXX_INCLUDE_WHAT_YOU_USE=$(which include-what-you-use)
cmake --build build

20.8 Timing steps

Make time/memory taken can be set CMAKE_CXX_COMPILER_LAUNCHER/CMAKE_CXX_LINKER_LANCHER. Some exam-
ples:

Linux:
"time"
"time;-v"
"time;-f;'%U user %S system %E elapsed %P CPU %M KB'"
macOS:
"time"
macOS with brew install gnu-time:
"gtime;-f;'%U user %S system %E elapsed %P CPU %M KB'"
#

74 Chapter 20. Contributing

boost_histogram

20.9 Common tasks

This will checkout new versions of the dependencies. Example given using the fish shell.

for f in *
cd $f
git fetch
git checkout boost-1.75.0 || echo "Not found"
cd ..

end

• Finish merging open PRs that you want in the new version

• Add most recent changes to the docs/CHANGELOG.md

• Sync master with develop using git checkout master; git merge develop --ff-only and push

• Make sure the full wheel build runs on master without issues (manually trigger if needed)

• Make the GitHub release in the GitHub UI. Copy the changelog entries and links for that version; this has to be
done as part of the release and tag procedure for archival tools (Zenodo) to pick them up correctly.

– Title should be "Version <version number>"

– Version tag should be "v" + major + "." + minor + "." + patch.

• GHA will build and send to PyPI for you when you release.

• Conda-forge will automatically make a PR to update within an hour or so, and it will merge automatically if it
passes.

This requires LLVM 9+, and is based on this post.

brew install llvm # macOS way to get clang-9
python3 -m venv .env_core # general environment (no install will be made)
. .env_core/bin/activate
pip install -r dev-requirements.txt
CXX="/usr/local/opt/llvm/bin/clang++" cmake -S . -B build-llvm \

-DCMAKE_CXX_FLAGS="-ftime-trace" \
-DPYTHON_EXECUTABLE=$(which python)

cmake --build build-llvm/

Now open a browser with SpeedScope, and load one of the files.

First, you need to install the all contributor CLI:

yarn add --dev all-contributors-cli

Then, you can add contributors:

yarn all-contributors add henryiii maintenance,code,doc

20.9. Common tasks 75

https://aras-p.info/blog/2019/01/16/time-trace-timeline-flame-chart-profiler-for-Clang/
https://www.speedscope.app
https://allcontributors.org/docs/en/cli/installation

boost_histogram

76 Chapter 20. Contributing

CHAPTER

TWENTYONE

SUPPORT

If you are stuck with a problem using Boost-histogram, please do get in touch at our Issues or Gitter Channel. The
developers are willing to help.

You can save time by following this procedure when reporting a problem:

• Do try to solve the problem on your own first. Read the documentation, including using the search feature, index
and reference documentation.

• Search the issue archives to see if someone else already had the same problem.

• Before writing, try to create a minimal example that reproduces the problem. You’ll get the fastest response if
you can send just a handful of lines of code that show what isn’t working.

77

https://github.com/scikit-hep/boost-histogram/issues
https://gitter.im/HSF/PyHEP-histogramming

boost_histogram

78 Chapter 21. Support

CHAPTER

TWENTYTWO

CHANGELOG

22.1 Version 1.4

22.1.1 Version 1.4.1

Features

• NumPy 2 support. #918

• 32-bit Windows Python 3.12 wheel added (matching NumPy). #920

Bugfixes

• Support filling Integer axes with unsigned integers #917

• Avoid triggering NumPy 2 dev release install on Python 3.12. #914

Backend and docs

• Add missing API docs #909

• Use boost 1.84 #920

22.1.2 Version 1.4.0

Features

• overflow=False is now supported for IntCategory and StrCategory. #883

Changes

• Using _storage_type now produces a DeprecationWarning instead of PendingDeprecationWarning.
#801

• Updated Boost to 1.82. The upper limit on Regular axes without overflow is now inclusive like NumPy. #802

• Produce more detailed error messages on C++ errors #848

79

https://github.com/scikit-hep/boost-histogram/pull/918
https://github.com/scikit-hep/boost-histogram/pull/920
https://github.com/scikit-hep/boost-histogram/pull/917
https://github.com/scikit-hep/boost-histogram/pull/914
https://github.com/scikit-hep/boost-histogram/pull/909
https://github.com/scikit-hep/boost-histogram/pull/920
https://github.com/scikit-hep/boost-histogram/pull/883
https://github.com/scikit-hep/boost-histogram/pull/801
https://github.com/scikit-hep/boost-histogram/pull/802
https://github.com/scikit-hep/boost-histogram/pull/848

boost_histogram

Bugfixes

• Make filling an integer axis with a float array (also) an error. #876

• Include -latomic on armv7l #823

Backend and docs

• Add Python 3.12 support and binary wheels, also latest PyPy. manylinux2014+ required. #880, #878

• Drop Python 3.6 support. #798

• Drop pre-built wheels for 32-bit Linux (NumPy also dropped). #849

• Add testing for WebAssembly (Pyodide). #850

• Use Ruff #829

22.2 Version 1.3

22.2.1 Version 1.3.2

Changes

• Added storage_type operator and storage_type() function #781, with pending deprecation for
_storage_type. #786 #790

• Better errors generated for missing or incorrect sample to mean storage. #782

• Better error message when views are set with an incompatible array. #794

Bug fixes

• Patch broken sum with fully empty (0 bin) axis. #718

• Fix zero range bh.numpy.histogram to match numpy.histogram behavior. #721

• Avoid triggering __init__ when copying (better support for subclasses with custom init’s). #759

• IntCategory now supports numbers larger than 2^24 (now 2^53). #792

• Pick a subset now supported inside a larger expression. #793

Backend and docs

• Minor optimizations for UFuncs. #771

• Added Python 3.11 wheels. #789

• Include PyPy 3.9 binary wheels. #730

• Using pybind11 2.10 #767

• Explicit reset() documentation. #783

• Minor cleanup and further removal of a little Python 2 back-compat code.

• Warnings have better stacklevel settings.

80 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/876
https://github.com/scikit-hep/boost-histogram/pull/823
https://github.com/scikit-hep/boost-histogram/pull/880
https://github.com/scikit-hep/boost-histogram/pull/878
https://github.com/scikit-hep/boost-histogram/pull/798
https://github.com/scikit-hep/boost-histogram/pull/849
https://github.com/scikit-hep/boost-histogram/pull/850
https://github.com/scikit-hep/boost-histogram/pull/829
https://github.com/scikit-hep/boost-histogram/pull/781
https://github.com/scikit-hep/boost-histogram/pull/786
https://github.com/scikit-hep/boost-histogram/pull/790
https://github.com/scikit-hep/boost-histogram/pull/782
https://github.com/scikit-hep/boost-histogram/pull/794
https://github.com/scikit-hep/boost-histogram/pull/718
https://github.com/scikit-hep/boost-histogram/pull/721
https://github.com/scikit-hep/boost-histogram/pull/759
https://github.com/scikit-hep/boost-histogram/pull/792
https://github.com/scikit-hep/boost-histogram/pull/793
https://github.com/scikit-hep/boost-histogram/pull/771
https://github.com/scikit-hep/boost-histogram/pull/789
https://github.com/scikit-hep/boost-histogram/pull/730
https://github.com/scikit-hep/boost-histogram/pull/767
https://github.com/scikit-hep/boost-histogram/pull/783

boost_histogram

22.2.2 Version 1.3.1

Bug fixes

• Fixed regression with invalid .project input causing segfaults. #708

• Minor skips for specific tests on ppc64le, primarily for a NumPy bug. #707

• Avoid using EH for program control, better on Pyodide. #709

• Fix regression with exact float not being accepted for .index for IntCategory in 1.3.0. Add hist nox session
to check downstream (manually for the moment). #710

22.2.3 Version 1.3.0

User changes

• PyPy 3.8 now supported with binary wheels. #677

• The GIL is released a little more often now. #662

• AxesTuple does not allow construction of non-axes. #680

• KeyError is now thrown when accessing a non-existent item in a Category Axis #689

• WeightedViews now support np.cumsum #699

Bug fixes

• Fixed WeightedMean storages producing NaN for .variances() #695

• Modify local include slightly to enable WebAssembly compilation in Pyodide #702

Developer changes

• Use PyLint in CI to check for some style issues #690

• Developer (CMake) installs no longer require toml #698

22.3 Version 1.2

22.3.1 Version 1.2.1

User changes

• musllinux wheels now provided along with manylinux #656

22.3. Version 1.2 81

https://github.com/scikit-hep/boost-histogram/pull/708
https://github.com/scikit-hep/boost-histogram/pull/707
https://github.com/scikit-hep/boost-histogram/pull/709
https://github.com/scikit-hep/boost-histogram/pull/710
https://github.com/scikit-hep/boost-histogram/pull/677
https://github.com/scikit-hep/boost-histogram/pull/662
https://github.com/scikit-hep/boost-histogram/pull/680
https://github.com/scikit-hep/boost-histogram/pull/689
https://github.com/scikit-hep/boost-histogram/pull/699
https://github.com/scikit-hep/boost-histogram/pull/695
https://github.com/scikit-hep/boost-histogram/pull/702
https://github.com/scikit-hep/boost-histogram/pull/690
https://github.com/scikit-hep/boost-histogram/pull/698
https://github.com/scikit-hep/boost-histogram/pull/656

boost_histogram

Bug fixes

• Fixed single-element negative growth fill #654

Developer changes

• No longer require Docker for clang-format, runs online too #610

• Using pybind11 2.8.0 #658

22.3.2 Version 1.2.0

User changes

• Python 3.10 officially supported, with wheels.

• Support subtraction on histograms #636

• Integer histograms are now signed #636

Bug fixes

• Support custom setters on AxesTuple subclasses. #627

• Faster picking if slices are not also used #645 or if they are #648 (1000x or more in some cases)

• Throw an error when an AxesTuple setter is the wrong length (inspired by zip strict in Python 3.10) #627

• Fix error thrown on comparison with axis and non-axis object #631

• Static typing no longer thinks storage= is required #604

Developer changes

• Support NumPy 1.21 for static type checking #625

• Use newer Boost 1.77 and Boost.Histogram 1.77+1 #594

• Provide nox support #647

22.4 Version 1.1

22.4.1 Version 1.1.0

User changes

• Experimentally support list selection on categorical axes #577

• Support Python 3.8 on Apple Silicon #600

• Scaling and addition with a scalar affect flow bins too #580

• Change sum_of_deltas_squared to _sum_of_deltas_squared (was an implementation detail) #602

82 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/654
https://github.com/scikit-hep/boost-histogram/pull/610
https://github.com/scikit-hep/boost-histogram/pull/658
https://github.com/scikit-hep/boost-histogram/pull/636
https://github.com/scikit-hep/boost-histogram/pull/636
https://github.com/scikit-hep/boost-histogram/pull/627
https://github.com/scikit-hep/boost-histogram/pull/645
https://github.com/scikit-hep/boost-histogram/pull/648
https://github.com/scikit-hep/boost-histogram/pull/627
https://github.com/scikit-hep/boost-histogram/pull/631
https://github.com/scikit-hep/boost-histogram/pull/604
https://github.com/scikit-hep/boost-histogram/pull/625
https://github.com/scikit-hep/boost-histogram/pull/594
https://github.com/scikit-hep/boost-histogram/pull/647
https://github.com/scikit-hep/boost-histogram/pull/577
https://github.com/scikit-hep/boost-histogram/pull/600
https://github.com/scikit-hep/boost-histogram/pull/580
https://github.com/scikit-hep/boost-histogram/pull/602

boost_histogram

Bug fixes

• Fix “picking” on a flow bin #576

• Better error message on getattr #596

Developer changes

• Test on Python 3.10 beta releases #600

• Provide a CMakeLists for quick standalone Boost.Histogram C++ experiments #591

• Adding logging with pytest failure output #575

22.5 Version 1.0

22.5.1 Version 1.0.2

• Fix scaling a weighted storage #559

• Fix partial summation over a Categorical axis #564

• Support running type checking from Python < 3.8 #542

22.5.2 Version 1.0.1

Subclassing Histogram changes

• A family= is no longer required if you only subclass Histogram. #533

Bug fixes

• Fix summing of Mean/WeightedMean accumulators #537

• Added missing dependency on typing_extensions for Python 3.6 & 3.7 #529

Typing changes

• Added Ellipsis support to typing. #525

• Better typing for Views. #530

• Fixed issue with Histogram copy constructor requiring metadata #532

22.5. Version 1.0 83

https://github.com/scikit-hep/boost-histogram/pull/576
https://github.com/scikit-hep/boost-histogram/pull/596
https://github.com/scikit-hep/boost-histogram/pull/600
https://github.com/scikit-hep/boost-histogram/pull/591
https://github.com/scikit-hep/boost-histogram/pull/575
https://github.com/scikit-hep/boost-histogram/pull/559
https://github.com/scikit-hep/boost-histogram/pull/564
https://github.com/scikit-hep/boost-histogram/pull/542
https://github.com/scikit-hep/boost-histogram/pull/533
https://github.com/scikit-hep/boost-histogram/pull/537
https://github.com/scikit-hep/boost-histogram/pull/529
https://github.com/scikit-hep/boost-histogram/pull/525
https://github.com/scikit-hep/boost-histogram/pull/530
https://github.com/scikit-hep/boost-histogram/pull/532

boost_histogram

22.5.3 Version 1.0.0

Dropped support for Python 2 and 3.5; removed large numbers of workarounds. Fully statically typed. API compatible
with the final 0.x release for most uses, except for subclassing; subclassing histogram components now uses Python 3
class keyword syntax to set families.

User changes

• Dropped Python 2.7 and 3.5 support #512

• Removed deprecated .options from axes. Use .traits instead. #503

• Full static typing available, UHI 0.1.2+ supported. #516, #517, #519, #520, #521, #523

Subclassing Histogram changes

• Use keyword class family setting when subclassing histogram components instead of custom decorator. #513

• Structure of internal repr creation changed and made slightly more public. #518

Bug fixes

• Consistently show metadata= in repr if present; refactored internal repr handling #518

• Minor typing related fixes for rare bugs (especially in numpy.py, #521)

22.6 Version 0.13

22.6.1 Version 0.13.2

• Backport fix scaling a weighted storage

• Backport fix partial summation over a Categorical axis

22.6.2 Version 0.13.1

• Backport fix for Mean/WeightedMean summing.

• Backport fix for boost_histogram.numpy density.

• Backport missing metadata from the repr’s.

• Ignore family= on Histogram subclassing to make subclassing Histogram only possible in 1.x + 0.x code.

84 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/512
https://github.com/scikit-hep/boost-histogram/pull/503
https://github.com/scikit-hep/boost-histogram/pull/516
https://github.com/scikit-hep/boost-histogram/pull/517
https://github.com/scikit-hep/boost-histogram/pull/519
https://github.com/scikit-hep/boost-histogram/pull/520
https://github.com/scikit-hep/boost-histogram/pull/521
https://github.com/scikit-hep/boost-histogram/pull/523
https://github.com/scikit-hep/boost-histogram/pull/513
https://github.com/scikit-hep/boost-histogram/pull/518
https://github.com/scikit-hep/boost-histogram/pull/518
https://github.com/scikit-hep/boost-histogram/pull/521

boost_histogram

22.6.3 Version 0.13.0

PlottableProtocol provides a way to plot in different libraries, and easy access to common quantities. This is expected
to be the final release for Python 2, and mostly equivalent in API to 1.0.

User changes

• Support for PlottableProtocol. You can now access .values(), .counts(), and .variances() on all storages;
used by plotting libraries. .kind describes the Kind of the histogram (bh.Kind.COUNT or bh.Kind.MEAN). .
options has been renamed to .traits, and a few more useful traits were added, like .discrete. Most other
portions of the Protocol were already present. #476

• Removed deprecated .rank on histograms (since 0.8). Use .ndim instead. #505

• Supports converting user histogram objects that provide a _to_boost_histogram_ method. #483

• A view=True parameter must now be passed to get a View instead of a standard NumPy values array from
to_numpy(). #498

Bug fixes

• Added additional support for typing, fixing a couple of rare Python 2 bugs in the process #493.

• The resulting histogram from bh.numpy.* functions is now reducible #508

Developer changes

• Use GitHub Actions for ARM compiling #474

• Apple Silicon support (since 0.12) #495

• Support compiling with C++17 #502

• Rename NPY_NUM_BUILD_JOBS to CMAKE_BUILD_PARALLEL_LEVEL for consistency with other Scikit-HEP
projects. #502

22.7 Version 0.12

22.7.1 Version 0.12.0

Pressing forward to 1.0.

User changes

• You can now set all complex storages, either on a Histogram or a View with an (N+1)D array #475

• Axes are now normal __dict__ classes, you can manipulate the __dict__ as normal. Axes construction now
lets you either use the old metadata shortcut or the __dict__ inline. #477

22.7. Version 0.12 85

https://github.com/scikit-hep/boost-histogram/pull/476
https://github.com/scikit-hep/boost-histogram/pull/505
https://github.com/scikit-hep/boost-histogram/pull/483
https://github.com/scikit-hep/boost-histogram/pull/498
https://github.com/scikit-hep/boost-histogram/pull/493
https://github.com/scikit-hep/boost-histogram/pull/508
https://github.com/scikit-hep/boost-histogram/pull/474
https://github.com/scikit-hep/boost-histogram/pull/495
https://github.com/scikit-hep/boost-histogram/pull/502
https://github.com/scikit-hep/boost-histogram/pull/502
https://github.com/scikit-hep/boost-histogram/pull/475
https://github.com/scikit-hep/boost-histogram/pull/477

boost_histogram

Bug fixes

• Fixed slicing projection with one-sided slices #479

• Fixed issue if final bin of Variable histogram was infinite by updating to Boost 1.75 #470

• NumPy arrays can be used for weights in bh.numpy #472

• Vectorization for WeightedMean accumulators was broken #475

Developer changes

• Bumped to pybind11 version #470

• Black formatting used in notebooks too #470

Upgrade warning

If you are using Axis.options, please transition to Axis.traits. traits includes all the old options, along with
some new traits, and matches the PlottableProtocol requirements.

22.8 Version 0.11

22.8.1 Version 0.11.1

Updating pybind11 to 2.6.0. #443 Features:

• Python 3.9 support

• PyPy2 / PyPy3.6 / PyPy3.7 support

• Warnings on latest AppleClang fixed

• 40% faster accumulator fills, simpler implementation

• Segfaults when passing an object with a throwing repr fixed

• kwargs replaced older workarounds (partially at the moment)

• Using new py::type instead of pybind11::detail usage

• Enhanced CMake support, finds conda and venv now, uses pybind11_find_import

• Using setuptools support from pybind11 (previously vendored, so benefits have been available since 0.11.0)

Also cleans up SDists a bit. #467

22.8.2 Version 0.11.0

A release focused on preparing for the upcoming Hist 2.0 release.

86 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/479
https://github.com/scikit-hep/boost-histogram/pull/470
https://github.com/scikit-hep/boost-histogram/pull/472
https://github.com/scikit-hep/boost-histogram/pull/475
https://github.com/scikit-hep/boost-histogram/pull/470
https://github.com/scikit-hep/boost-histogram/pull/470
https://github.com/scikit-hep/boost-histogram/pull/443
https://github.com/scikit-hep/boost-histogram/pull/467

boost_histogram

User changes

• Arbitrary items can be set on an axis or histogram. #450, #456

• Subclasses can customize the conversion procedure. #456

Bug fixes

• Fixed reading pickles from boost-histogram 0.6-0.8 #445

• Minor correctness fix #446

• Accidental install of typing on Python 3.5+ fixed

• Scalar ND fill fixed #453

Developer changes

• Updated to Boost 1.74 #442

• CMake installs version.py now too #449

• Updated setuptools infrastructure no longer requires NumPy #451

• Some basic clang-tidy checks are now being run #455

22.9 Version 0.10

22.9.1 Version 0.10.2

Quick fix for extra print statement in fill.

Bug fixes

• Fixed debugging print statement in fill. #438

Developer changes

• Added CI/pre-commit check for print statements #438

• Formatting CMakeLists now too #439

22.9.2 Version 0.10.1

Several fixes were made, mostly related to Weight storage histograms from Uproot 4.

22.9. Version 0.10 87

https://github.com/scikit-hep/boost-histogram/pull/450
https://github.com/scikit-hep/boost-histogram/pull/456
https://github.com/scikit-hep/boost-histogram/pull/456
https://github.com/scikit-hep/boost-histogram/pull/445
https://github.com/scikit-hep/boost-histogram/pull/446
https://github.com/scikit-hep/boost-histogram/pull/453
https://github.com/scikit-hep/boost-histogram/pull/442
https://github.com/scikit-hep/boost-histogram/pull/449
https://github.com/scikit-hep/boost-histogram/pull/451
https://github.com/scikit-hep/boost-histogram/pull/455
https://github.com/scikit-hep/boost-histogram/pull/438
https://github.com/scikit-hep/boost-histogram/pull/438
https://github.com/scikit-hep/boost-histogram/pull/439

boost_histogram

Bug fixes

• Reduction on h.axes.widths supported again #428

• WeightedSumView supports standard array operations #432

• Operations shallow copy (non-copyable metadata supported) #433

• Pandas Series as samples/weights supported #434

• Support NumPy scalars in operations #436

22.9.3 Version 0.10.0

This version was released during PyHEP 2020. Several improvements were made to usability when plotting and in-
dexing.

User changes

• AxesTuple array now support operations via ArrayTuple #414

• Support sum and bh.rebin without slice #424

• Nicer error messages in some cases #415

• Made a few properties hidden for accumulators that were not public #418

• Boolean now supports reduction, faster compile #422

• AxesTuple now available publicly for subprojects #419

Bug fixes

• Histograms support operations with arrays, no longer take the first element only #417

22.10 Version 0.9

22.10.1 Version 0.9.0

This version was released just before PyHEP 2020. Several important fixes were made, along with a few new features
to better support downstream projects.

User changes

• metadata supported and propagated on Histograms (slots added) #403

• Added dd=True option in to_numpy #406

• Deprecated cpp module removed #402

88 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/428
https://github.com/scikit-hep/boost-histogram/pull/432
https://github.com/scikit-hep/boost-histogram/pull/433
https://github.com/scikit-hep/boost-histogram/pull/434
https://github.com/scikit-hep/boost-histogram/pull/436
https://github.com/scikit-hep/boost-histogram/pull/414
https://github.com/scikit-hep/boost-histogram/pull/424
https://github.com/scikit-hep/boost-histogram/pull/415
https://github.com/scikit-hep/boost-histogram/pull/418
https://github.com/scikit-hep/boost-histogram/pull/422
https://github.com/scikit-hep/boost-histogram/pull/419
https://github.com/scikit-hep/boost-histogram/pull/417
https://github.com/scikit-hep/boost-histogram/pull/403
https://github.com/scikit-hep/boost-histogram/pull/406
https://github.com/scikit-hep/boost-histogram/pull/402

boost_histogram

Developer changes

• Subclasses can override axes generation #401

• [dev] extra now installs pytest #401

Bug fixes

• Fix numpy.histogramdd return structure #406

• Travis deploy multi-arch fixes #399

• Selecting on a bool axes supports 2D+ histograms #398

• Warnings fixed on NumPy 1.19+ [#404][]

22.11 Version 0.8

22.11.1 Version 0.8.0

This version was released just before SciPy 2020 and Boost 1.74. Highlights include better accumulator views, simpler
summing, better NumPy and Pandas compatibility, and sums on growing axes. Lots of backend work, including a new
wheel building system, internal changes and better reliance on Boost.Histogram’s C++ tools for actions like cropping.

User changes

• Weighted histogram cells can now be assigned directly from iterables #375

• Weighted views can be summed and added #368

• Sum is now identical to the built-in sum function #365

• Adding growing axis is better supported #358

• Slicing an AxesTuple now keeps the type #384

• ndim replaces rank for NumPy compatibility #385

• Any array-like supported in fill #391, any iterable can be used for Categories #392

• Added Boolean axes, from Boost.Histogram 1.74 #390

• Division between histograms is supported #393

• More deprecated functionality removed

Bug fixes

• Support older versions of CloudPickle (issue also fixed upstream) #343

• Drop extra printout #338

• Throw an error instead of returning an incorrect result in more places #386

22.11. Version 0.8 89

https://github.com/scikit-hep/boost-histogram/pull/401
https://github.com/scikit-hep/boost-histogram/pull/401
https://github.com/scikit-hep/boost-histogram/pull/406
https://github.com/scikit-hep/boost-histogram/pull/399
https://github.com/scikit-hep/boost-histogram/pull/398
https://github.com/scikit-hep/boost-histogram/pull/375
https://github.com/scikit-hep/boost-histogram/pull/368
https://github.com/scikit-hep/boost-histogram/pull/365
https://github.com/scikit-hep/boost-histogram/pull/358
https://github.com/scikit-hep/boost-histogram/pull/384
https://github.com/scikit-hep/boost-histogram/pull/385
https://github.com/scikit-hep/boost-histogram/pull/391
https://github.com/scikit-hep/boost-histogram/pull/392
https://github.com/scikit-hep/boost-histogram/pull/390
https://github.com/scikit-hep/boost-histogram/pull/393
https://github.com/cloudpipe/cloudpickle
https://github.com/scikit-hep/boost-histogram/pull/343
https://github.com/scikit-hep/boost-histogram/pull/338
https://github.com/scikit-hep/boost-histogram/pull/386

boost_histogram

Developer changes

• Update Boost to 1.73 #359, pybind11 to 2.5.0 #351, Boost.Histogram to pre-1.74 #388

• Cropping no longer uses workaround #373

• Many more checks added to pre-commit #366

• Deprecating cpp interface #391

• Wheelbuilding migrated to cibuildwheel and GHA #361

22.12 Version 0.7

22.12.1 Version 0.7.0

This version removes deprecated functionality, and has several backend improvements. The most noticeable user-facing
change is the multithreaded fill feature, which can enable significant speedups when you have a dataset that is much
larger than the number of bins in your histogram and have free cores to use. Several small bugs have been fixed.

User changes

• Added threads= keyword to .fill and NumPy functions; 0 for automatic, default is 1 #325

• .metadata is now settable directly from the AxesTuple #303

• Deprecated items from 0.5.x now dropped #301

• cpp mode updates and fixes #317

Bug fixes

• Dict indexing is now identical to positional indexing, fixes “picking” axes in dict #320

• Passing samples=None is now always allowed in .fill #325

Developer changes

• Build system update, higher requirements for developers (only) #314

– Version is now obtained from setuptools_scm, no longer stored in repo

• Removed futures requirement for Python 2 tests

• Updated Boost.Histogram, cleaner code with fewer workarounds

90 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/359
https://github.com/scikit-hep/boost-histogram/pull/351
https://github.com/scikit-hep/boost-histogram/pull/388
https://github.com/scikit-hep/boost-histogram/pull/373
https://pre-commit.com
https://github.com/scikit-hep/boost-histogram/pull/366
https://github.com/scikit-hep/boost-histogram/pull/391
https://cibuildwheel.readthedocs.io/en/stable
https://github.com/scikit-hep/boost-histogram/pull/361
https://github.com/scikit-hep/boost-histogram/pull/325
https://github.com/scikit-hep/boost-histogram/pull/303
https://github.com/scikit-hep/boost-histogram/pull/301
https://github.com/scikit-hep/boost-histogram/pull/317
https://github.com/scikit-hep/boost-histogram/pull/320
https://github.com/scikit-hep/boost-histogram/pull/325
https://github.com/scikit-hep/boost-histogram/pull/314

boost_histogram

22.13 Version 0.6

22.13.1 Version 0.6.2

Common analysis tasks are now better supported. Much more complete documentation. Now using development
branch of Boost.Histogram again.

Bug fixes

• Fix sum over category axes in indexing #298

• Allow single category item selection #298

• Allow slicing on axes without flow bins #288, #300

• Sum repr no longer throws error #293

Developer changes

• Now using scikit-hep/azure-wheel-helpers via subtree #292

22.13.2 Version 0.6.1

Examples and notebooks are now up to date with the current state of the library. Using Boost 1.72 release.

User changes

• Slices and single values can be mixed in indexing #279

• UHI locators supported on axes #280

Bug fixes

• Properties on accumulator views now resolve correctly #273

• Division of a histogram by a number is supported again #278

• Setting a histogram with length one slice fixed #279

• NumPy functions now work with NumPy ints in bins= #282

• In-place addition avoids a copy #284

22.13. Version 0.6 91

https://github.com/scikit-hep/boost-histogram/pull/298
https://github.com/scikit-hep/boost-histogram/pull/298
https://github.com/scikit-hep/boost-histogram/pull/288
https://github.com/scikit-hep/boost-histogram/pull/300
https://github.com/scikit-hep/boost-histogram/pull/293
https://github.com/scikit-hep/boost-histogram/pull/292
https://github.com/scikit-hep/boost-histogram/pull/279
https://github.com/scikit-hep/boost-histogram/pull/280
https://github.com/scikit-hep/boost-histogram/pull/273
https://github.com/scikit-hep/boost-histogram/pull/278
https://github.com/scikit-hep/boost-histogram/pull/279
https://github.com/scikit-hep/boost-histogram/pull/282
https://github.com/scikit-hep/boost-histogram/pull/284

boost_histogram

22.13.3 Version 0.6.0

This version fills out most of the remaining features missing from the 0.5.x series. You can now use all the storages
without the original caveats; even the accumulators can be accessed array-at-a-time without copy, pickled quickly, and
set array-at-a-time, as well.

The API has changed considerably, providing a more consistent experience in Python. Most of the classic API still
works in this release, but will issue a warning and will be removed from the next release. Please use this release to
transition existing 0.5.x code to the new API.

User changes

• Histogram and Axis classes now follow PEP 8 naming scheme (histogram->Histogram, regular->Regular,
int->Int64 etc.) #192, #255

• You can now view a histogram with accumulators, with property access such as h.view().value #194

• Circular variable and integer axes added #231

• Split Category into StrCategory and IntCategory, now allows empty categories when growth=True #221

• StrCategory fills are safer and faster #239, #244

• Added axes transforms #192

• Function(forward, inverse) transform added, allowing ultra-fast C function pointer transforms #231

• You can now set histogram contents directly #250

• You can now sum over a range with endpoints #185

• h.axes now has the functions from axis as well. #183

• bh.project has become bh.sum #185

• .reduce(...) and the reducers in bh.algorithm have been removed in favor of dictionary based UHI slicing
#259

• bh.numpy module interface updates, histogram=bh.Histogram replaces cryptic bh=True, and
density=True is now supported in NumPy mode #256

• Added hist.copy() #218 and hist.shape #264

• Signatures are much nicer in Python 3 #188

• Reprs are better, various properties like __module__ are now set correctly #200

Bug fixes

• Unlimited and AtomicInt storages now allow single item access #194

• .view() now no longer makes a copy #194

• Fixes related to string category axis fills #233, #230

• Axes are no longer copies, support setting metadata #238, #246

• Pickling accumulator storages is now comparable in performance simple storages #258

92 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/192
https://github.com/scikit-hep/boost-histogram/pull/255
https://github.com/scikit-hep/boost-histogram/pull/194
https://github.com/scikit-hep/boost-histogram/pull/231
https://github.com/scikit-hep/boost-histogram/pull/221
https://github.com/scikit-hep/boost-histogram/pull/239
https://github.com/scikit-hep/boost-histogram/pull/244
https://github.com/scikit-hep/boost-histogram/pull/192
https://github.com/scikit-hep/boost-histogram/pull/231
https://github.com/scikit-hep/boost-histogram/pull/250
https://github.com/scikit-hep/boost-histogram/pull/185
https://github.com/scikit-hep/boost-histogram/pull/183
https://github.com/scikit-hep/boost-histogram/pull/185
https://github.com/scikit-hep/boost-histogram/pull/259
https://github.com/scikit-hep/boost-histogram/pull/256
https://github.com/scikit-hep/boost-histogram/pull/218
https://github.com/scikit-hep/boost-histogram/pull/264
https://github.com/scikit-hep/boost-histogram/pull/188
https://github.com/scikit-hep/boost-histogram/pull/200
https://github.com/scikit-hep/boost-histogram/pull/194
https://github.com/scikit-hep/boost-histogram/pull/194
https://github.com/scikit-hep/boost-histogram/pull/233
https://github.com/scikit-hep/boost-histogram/pull/230
https://github.com/scikit-hep/boost-histogram/pull/238
https://github.com/scikit-hep/boost-histogram/pull/246
https://github.com/scikit-hep/boost-histogram/pull/258

boost_histogram

Developer changes

• The linux wheels are now 10-20x smaller #229

• The hist/axis classes are now pure Python, with a C++ object inside #183

• Most internal names changed, core->_core, etc. #183

• The uhi module is now tag. #183

• boost_histogram.cpp as bh provides C++ high-compatibility mode. #183

• Indexing tags now use full UHI instead of workarounds #185

• Removed log and sqrt special axes types#231

• Family and registration added, new casting system #200

22.14 Version 0.5

22.14.1 Version 0.5.2

User changes:

• bh.loc supports an offset #164

• Nicer reprs in several places #167

• Deprecate .at and .axis #170

Bug fixes:

• Use relative paths in setup.py to avoid resolving WSL paths on Windows #162, #163

• Better pybind11 support for Python 3.8 #168

Developer changes:

• Serialization code shared with Boost.Histogram #166

• Avoid unused PEP 517 isolation for now #171 (may return with proper PEP 518 support eventually)

22.14.2 Version 0.5.1

User changes:

• Removed the bh.indexed/h.indexed iterator #150

• Added .axes AxisTuple, with direct access to properties #150

• Cleaned up tab completion in IPython #150

22.14. Version 0.5 93

https://github.com/scikit-hep/boost-histogram/pull/229
https://github.com/scikit-hep/boost-histogram/pull/183
https://github.com/scikit-hep/boost-histogram/pull/183
https://github.com/scikit-hep/boost-histogram/pull/183
https://github.com/scikit-hep/boost-histogram/pull/183
https://github.com/scikit-hep/boost-histogram/pull/185
https://github.com/scikit-hep/boost-histogram/pull/231
https://github.com/scikit-hep/boost-histogram/pull/200
https://github.com/scikit-hep/boost-histogram/pull/164
https://github.com/scikit-hep/boost-histogram/pull/167
https://github.com/scikit-hep/boost-histogram/pull/170
https://github.com/scikit-hep/boost-histogram/pull/162
https://github.com/scikit-hep/boost-histogram/pull/163
https://github.com/scikit-hep/boost-histogram/pull/168
https://github.com/scikit-hep/boost-histogram/pull/166
https://github.com/scikit-hep/boost-histogram/pull/171
https://github.com/scikit-hep/boost-histogram/pull/150
https://github.com/scikit-hep/boost-histogram/pull/150
https://github.com/scikit-hep/boost-histogram/pull/150

boost_histogram

Bug fixes:

• Fixed a bug in the sdist missing Boost.Variant2 #154

• Fixed filling on strided inputs #158

22.14.3 Version 0.5.0

First beta release and beginning of the changelog.

Known issues:

• Unlimited storage does not support pickling or classic multiprocessing

• Some non-simple storages do not support some forms of access, like .view

• Indexing and the array versions (such as centers) are incomplete and subject to change

• The numpy module is provisional and subject to change

• Docstrings and signatures will improve in later versions (especially on Python 3)

94 Chapter 22. Changelog

https://github.com/scikit-hep/boost-histogram/pull/154
https://github.com/scikit-hep/boost-histogram/pull/158

CHAPTER

TWENTYTHREE

BOOST_HISTOGRAM

class boost_histogram._internal.hist.Histogram(*axes: Axis | CppAxis | Histogram | Any, storage:
Storage = boost_histogram._core.storage.double,
metadata: Any = None)

Bases: object

axes: AxesTuple

copy(*, deep: bool = True)→ H
Make a copy of the histogram. Defaults to making a deep copy (axis metadata copied); use deep=False to
avoid making a copy of axis metadata.

counts(flow: bool = False)→ np.typing.NDArray[Any]
Returns the number of entries in each bin for an unweighted histogram or profile and an effective number
of entries (defined below) for a weighted histogram or profile. An exotic generalized histogram could have
no sensible .counts, so this is Optional and should be checked by Consumers.

If kind == “MEAN”, counts (effective or not) can and should be used to determine whether the mean value
and its variance should be displayed (see documentation of values and variances, respectively). The counts
should also be used to compute the error on the mean (see documentation of variances).

For a weighted histogram, counts is defined as sum_of_weights ** 2 / sum_of_weights_squared. It is equal
or less than the number of times the bin was filled, the equality holds when all filled weights are equal. The
larger the spread in weights, the smaller it is, but it is always 0 if filled 0 times, and 1 if filled once, and
more than 1 otherwise.

Returns
“np.typing.NDArray[Any]”[np.float64]

empty(flow: bool = False)→ bool
Check to see if the histogram has any non-default values. You can use flow=True to check flow bins too.

fill(*args: Any | str, weight: Any | None = None, sample: Any | None = None, threads: int | None = None)
→ H

Insert data into the histogram.

Parameters

• *args (Union[Array[float], Array[int], Array[str], float, int, str])
– Provide one value or array per dimension.

• weight (List[Union[Array[float], Array[int], float, int, str]]]) –
Provide weights (only if the histogram storage supports it)

• sample (List[Union[Array[float], Array[int], Array[str], float, int,
str]]]) – Provide samples (only if the histogram storage supports it)

95

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

boost_histogram

• threads (Optional[int]) – Fill with threads. Defaults to None, which does not activate
threaded filling. Using 0 will automatically pick the number of available threads (usually
two per core).

property kind: Kind

Returns Kind.COUNT if this is a normal summing histogram, and Kind.MEAN if this is a mean histogram.

Returns
Kind

property ndim: int

Number of axes (dimensions) of the histogram.

project(*args: int)→ H | float | Any
Project to a single axis or several axes on a multidimensional histogram. Provided a list of axis numbers,
this will produce the histogram over those axes only. Flow bins are used if available.

reset()→ H
Clear the bin counters.

property shape: tuple[int, ...]

Tuple of axis sizes (not including underflow/overflow).

property size: int

Total number of bins in the histogram (including underflow/overflow).

property storage_type: type[Storage]

sum(flow: bool = False)→ float | Any
Compute the sum over the histogram bins (optionally including the flow bins).

to_numpy(flow: bool = False, *, dd: bool = False, view: bool = False)→ tuple[np.typing.NDArray[Any], ...]
| tuple[np.typing.NDArray[Any], tuple[np.typing.NDArray[Any], ...]]

Convert to a NumPy style tuple of return arrays. Edges are converted to match NumPy standards, with
upper edge inclusive, unlike boost-histogram, where upper edge is exclusive.

Parameters

• flow (bool = False) – Include the flow bins.

• dd (bool = False) – Use the histogramdd return syntax, where the edges are in a tuple.
Otherwise, this is the histogram/histogram2d return style.

• view (bool = False) – The behavior for the return value. By default, this will return
array of the values only regardless of the storage (which is all NumPy’s histogram function
can do). view=True will return the boost-histogram view of the storage.

Returns

• contents (Array[Any]) – The bin contents

• *edges (Array[float]) – The edges for each dimension

values(flow: bool = False)→ np.typing.NDArray[Any]
Returns the accumulated values. The counts for simple histograms, the sum of weights for weighted his-
tograms, the mean for profiles, etc.

If counts is equal to 0, the value in that cell is undefined if kind == “MEAN”.

Parameters
flow – Enable flow bins. Not part of PlottableHistogram, but

96 Chapter 23. boost_histogram

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

boost_histogram

included for consistency with other methods and flexibility.

Returns
“np.typing.NDArray[Any]”[np.float64]

variances(flow: bool = False)→ np.typing.NDArray[Any] | None
Returns the estimated variance of the accumulated values. The sum of squared weights for weighted his-
tograms, the variance of samples for profiles, etc. For an unweighed histogram where kind == “COUNT”,
this should return the same as values if the histogram was not filled with weights, and None otherwise. If
counts is equal to 1 or less, the variance in that cell is undefined if kind == “MEAN”. This must be written
<= 1, and not < 2; when this effective counts (weighed mean), then counts could be less than 2 but more
than 1.

If kind == “MEAN”, the counts can be used to compute the error on the mean as sqrt(variances / counts),
this works whether or not the entries are weighted if the weight variance was tracked by the implementation.

Currently, this always returns - but in the future, it will return None if a weighted fill is made on a unweighed
storage.

Parameters
flow – Enable flow bins. Not part of PlottableHistogram, but

included for consistency with other methods and flexibility.

Returns
“np.typing.NDArray[Any]”[np.float64]

view(flow: bool = False)→ np.typing.NDArray[Any] | WeightedSumView | WeightedMeanView | MeanView
Return a view into the data, optionally with overflow turned on.

97

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

boost_histogram

98 Chapter 23. boost_histogram

CHAPTER

TWENTYFOUR

BOOST_HISTOGRAM.AXIS

class boost_histogram.axis.ArrayTuple(iterable=(), /)
Bases: tuple

broadcast()→ A
The arrays in this tuple will be compressed if possible to save memory. Use this method to broadcast them
out into their full memory representation.

class boost_histogram.axis.AxesTuple(_AxesTuple__iterable: Iterable[Axis])
Bases: tuple

bin(*indexes: float)→ tuple[float, ...]
Return the edges of the bins as a tuple for a continuous axis or the bin value for a non-continuous axis,
when given an index.

property centers: ArrayTuple

property edges: ArrayTuple

property extent: tuple[int, ...]

index(*values: float)→ tuple[float, ...]
Return the fractional index(es) given a value (or values) on the axis.

property size: tuple[int, ...]

value(*indexes: float)→ tuple[float, ...]
Return the value(s) given an (fractional) index (or indices).

property widths: ArrayTuple

class boost_histogram.axis.Axis(ax: Any, metadata: dict[str, Any] | None, __dict__: dict[str, Any] | None)
Bases: object

bin(index: float)→ int | str | tuple[float, float]
Return the edges of the bins as a tuple for a continuous axis or the bin value for a non-continuous axis,
when given an index.

property centers: np.typing.NDArray[Any]

An array of bin centers.

property edges: np.typing.NDArray[Any]

property extent: int

Return number of bins including under- and overflow.

99

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

boost_histogram

index(value: float | str)→ int
Return the fractional index(es) given a value (or values) on the axis.

property size: int

Return number of bins excluding under- and overflow.

property traits: Traits

Get traits for the axis - read only properties of a specific axis.

value(index: float)→ float
Return the value(s) given an (fractional) index (or indices).

property widths: np.typing.NDArray[Any]

An array of bin widths.

class boost_histogram.axis.Boolean(*, metadata: Any = None, __dict__: dict[str, Any] | None = None)
Bases: Axis

class boost_histogram.axis.IntCategory(categories: Iterable[int], *, metadata: Any = None, growth: bool
= False, overflow: bool = True, __dict__: dict[str, Any] | None =
None)

Bases: BaseCategory

class boost_histogram.axis.Integer(start: int, stop: int, *, metadata: Any = None, underflow: bool = True,
overflow: bool = True, growth: bool = False, circular: bool = False,
__dict__: dict[str, Any] | None = None)

Bases: Axis

class boost_histogram.axis.Regular(bins: int, start: float, stop: float, *, metadata: Any = None, underflow:
bool = True, overflow: bool = True, growth: bool = False, circular:
bool = False, transform: AxisTransform | None = None, __dict__:
dict[str, Any] | None = None)

Bases: Axis

property transform: AxisTransform | None

class boost_histogram.axis.StrCategory(categories: Iterable[str], *, metadata: Any = None, growth: bool
= False, overflow: bool = True, __dict__: dict[str, Any] | None =
None)

Bases: BaseCategory

index(value: float | str)→ int
Return the fractional index(es) given a value (or values) on the axis.

class boost_histogram.axis.Traits(underflow: 'bool' = False, overflow: 'bool' = False, circular: 'bool' =
False, growth: 'bool' = False, continuous: 'bool' = False, ordered: 'bool'
= False)

Bases: object

circular: bool = False

continuous: bool = False

property discrete: bool

True if axis is not continuous

growth: bool = False

100 Chapter 24. boost_histogram.axis

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

boost_histogram

ordered: bool = False

overflow: bool = False

underflow: bool = False

class boost_histogram.axis.Variable(edges: Iterable[float], *, metadata: Any = None, underflow: bool =
True, overflow: bool = True, growth: bool = False, circular: bool =
False, __dict__: dict[str, Any] | None = None)

Bases: Axis

101

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None

boost_histogram

102 Chapter 24. boost_histogram.axis

CHAPTER

TWENTYFIVE

BOOST_HISTOGRAM.AXIS.TRANSFORM

class boost_histogram.axis.transform.AxisTransform

Bases: object

forward(value: float)→ float
Compute the forward transform

inverse(value: float)→ float
Compute the inverse transform

class boost_histogram.axis.transform.Function(forward: Any, inverse: Any, *, convert: Any = None,
name: str = '')

Bases: AxisTransform

class boost_histogram.axis.transform.Pow(power: float)
Bases: AxisTransform

property power: float

The power of the transform

103

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

boost_histogram

104 Chapter 25. boost_histogram.axis.transform

CHAPTER

TWENTYSIX

BOOST_HISTOGRAM.ACCUMULATORS

boost_histogram.accumulators.Accumulator

alias of Any

105

https://docs.python.org/3/library/typing.html#typing.Any

boost_histogram

106 Chapter 26. boost_histogram.accumulators

CHAPTER

TWENTYSEVEN

BOOST_HISTOGRAM.NUMPY

boost_histogram.numpy.histogram(a: ArrayLike, bins: int | str | np.typing.NDArray[Any] = 10, range:
tuple[float, float] | None = None, normed: None = None, weights:
ArrayLike | None = None, density: bool = False, *, histogram: None |
type[_hist.Histogram] = None, storage: _storage.Storage | None = None,
threads: int | None = None)→ Any

Return a boost-histogram object using the same arguments as numpy’s histogram. This does not support the
deprecated normed=True argument. Three extra arguments are added: histogram=bh.Histogram will enable
object based output, storage=bh.storage.* lets you set the storage used, and threads=int lets you set the number
of threads to fill with (0 for auto, None for 1).

Compute the histogram of a dataset.

Parameters

• a (array_like) – Input data. The histogram is computed over the flattened array.

• bins (int or sequence of scalars or str, optional) – If bins is an int, it defines
the number of equal-width bins in the given range (10, by default). If bins is a sequence, it
defines a monotonically increasing array of bin edges, including the rightmost edge, allowing
for non-uniform bin widths.

Added in version 1.11.0.

If bins is a string, it defines the method used to calculate the optimal bin width, as defined
by histogram_bin_edges.

• range ((float, float), optional) – The lower and upper range of the bins. If not
provided, range is simply (a.min(), a.max()). Values outside the range are ignored.
The first element of the range must be less than or equal to the second. range affects the
automatic bin computation as well. While bin width is computed to be optimal based on the
actual data within range, the bin count will fill the entire range including portions containing
no data.

• weights (array_like, optional) – An array of weights, of the same shape as a. Each
value in a only contributes its associated weight towards the bin count (instead of 1). If
density is True, the weights are normalized, so that the integral of the density over the range
remains 1.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Note that the sum of the histogram
values will not be equal to 1 unless bins of unity width are chosen; it is not a probability
mass function.

Returns

107

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

boost_histogram

• hist (array) – The values of the histogram. See density and weights for a description of the
possible semantics.

• bin_edges (array of dtype float) – Return the bin edges (length(hist)+1).

See also:

histogramdd , bincount, searchsorted, digitize, histogram_bin_edges

Notes

All but the last (righthand-most) bin is half-open. In other words, if bins is:

[1, 2, 3, 4]

then the first bin is [1, 2) (including 1, but excluding 2) and the second [2, 3). The last bin, however, is [3,
4], which includes 4.

Examples

>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
(array([0, 2, 1]), array([0, 1, 2, 3]))
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> a = np.arange(5)
>>> hist, bin_edges = np.histogram(a, density=True)
>>> hist
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
>>> hist.sum()
2.4999999999999996
>>> np.sum(hist * np.diff(bin_edges))
1.0

Added in version 1.11.0.

Automated Bin Selection Methods example, using 2 peak random data with 2000 points:

>>> import matplotlib.pyplot as plt
>>> rng = np.random.RandomState(10) # deterministic random data
>>> a = np.hstack((rng.normal(size=1000),
... rng.normal(loc=5, scale=2, size=1000)))
>>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram
>>> plt.title("Histogram with 'auto' bins")
Text(0.5, 1.0, "Histogram with 'auto' bins")
>>> plt.show()

boost_histogram.numpy.histogram2d(x: object, y: object, bins: int | tuple[int, int] = 10, range: None |
Sequence[None | tuple[float, float]] = None, normed: None = None,
weights: object | None = None, density: bool = False, *, histogram:
None | type[Histogram] = None, storage: Storage =
boost_histogram._core.storage.double, threads: int | None = None)→
Any

108 Chapter 27. boost_histogram.numpy

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any

boost_histogram

Return a boost-histogram object using the same arguments as numpy’s histogram2d. This does not support the
deprecated normed=True argument. Three extra arguments are added: histogram=bh.Histogram will enable
object based output, storage=bh.storage.* lets you set the storage used, and threads=int lets you set the number
of threads to fill with (0 for auto, None for 1).

Compute the bi-dimensional histogram of two data samples.

Parameters

• x (array_like, shape (N,)) – An array containing the x coordinates of the points to be
histogrammed.

• y (array_like, shape (N,)) – An array containing the y coordinates of the points to be
histogrammed.

• bins (int or array_like or [int, int] or [array, array], optional) –
The bin specification:

– If int, the number of bins for the two dimensions (nx=ny=bins).

– If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins).

– If [int, int], the number of bins in each dimension (nx, ny = bins).

– If [array, array], the bin edges in each dimension (x_edges, y_edges = bins).

– A combination [int, array] or [array, int], where int is the number of bins and array is the
bin edges.

• range (array_like, shape(2,2), optional) – The leftmost and rightmost edges of
the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin,
xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and
not tallied in the histogram.

• density (bool, optional) – If False, the default, returns the number of samples in
each bin. If True, returns the probability density function at the bin, bin_count /
sample_count / bin_area.

• weights (array_like, shape(N,), optional) – An array of values w_i weighing
each sample (x_i, y_i). Weights are normalized to 1 if density is True. If density is
False, the values of the returned histogram are equal to the sum of the weights belonging to
the samples falling into each bin.

Returns

• H (ndarray, shape(nx, ny)) – The bi-dimensional histogram of samples x and y. Values in
x are histogrammed along the first dimension and values in y are histogrammed along the
second dimension.

• xedges (ndarray, shape(nx+1,)) – The bin edges along the first dimension.

• yedges (ndarray, shape(ny+1,)) – The bin edges along the second dimension.

See also:

histogram
1D histogram

histogramdd
Multidimensional histogram

109

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

boost_histogram

Notes

When density is True, then the returned histogram is the sample density, defined such that the sum over bins of
the product bin_value * bin_area is 1.

Please note that the histogram does not follow the Cartesian convention where x values are on the abscissa and
y values on the ordinate axis. Rather, x is histogrammed along the first dimension of the array (vertical), and y
along the second dimension of the array (horizontal). This ensures compatibility with histogramdd.

Examples

>>> from matplotlib.image import NonUniformImage
>>> import matplotlib.pyplot as plt

Construct a 2-D histogram with variable bin width. First define the bin edges:

>>> xedges = [0, 1, 3, 5]
>>> yedges = [0, 2, 3, 4, 6]

Next we create a histogram H with random bin content:

>>> x = np.random.normal(2, 1, 100)
>>> y = np.random.normal(1, 1, 100)
>>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))
>>> # Histogram does not follow Cartesian convention (see Notes),
>>> # therefore transpose H for visualization purposes.
>>> H = H.T

imshow can only display square bins:

>>> fig = plt.figure(figsize=(7, 3))
>>> ax = fig.add_subplot(131, title='imshow: square bins')
>>> plt.imshow(H, interpolation='nearest', origin='lower',
... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
<matplotlib.image.AxesImage object at 0x...>

pcolormesh can display actual edges:

>>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',
... aspect='equal')
>>> X, Y = np.meshgrid(xedges, yedges)
>>> ax.pcolormesh(X, Y, H)
<matplotlib.collections.QuadMesh object at 0x...>

NonUniformImage can be used to display actual bin edges with interpolation:

>>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',
... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])
>>> im = NonUniformImage(ax, interpolation='bilinear')
>>> xcenters = (xedges[:-1] + xedges[1:]) / 2
>>> ycenters = (yedges[:-1] + yedges[1:]) / 2
>>> im.set_data(xcenters, ycenters, H)
>>> ax.add_image(im)
>>> plt.show()

110 Chapter 27. boost_histogram.numpy

boost_histogram

It is also possible to construct a 2-D histogram without specifying bin edges:

>>> # Generate non-symmetric test data
>>> n = 10000
>>> x = np.linspace(1, 100, n)
>>> y = 2*np.log(x) + np.random.rand(n) - 0.5
>>> # Compute 2d histogram. Note the order of x/y and xedges/yedges
>>> H, yedges, xedges = np.histogram2d(y, x, bins=20)

Now we can plot the histogram using pcolormesh, and a hexbin for comparison.

>>> # Plot histogram using pcolormesh
>>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
>>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')
>>> ax1.plot(x, 2*np.log(x), 'k-')
>>> ax1.set_xlim(x.min(), x.max())
>>> ax1.set_ylim(y.min(), y.max())
>>> ax1.set_xlabel('x')
>>> ax1.set_ylabel('y')
>>> ax1.set_title('histogram2d')
>>> ax1.grid()

>>> # Create hexbin plot for comparison
>>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')
>>> ax2.plot(x, 2*np.log(x), 'k-')
>>> ax2.set_title('hexbin')
>>> ax2.set_xlim(x.min(), x.max())
>>> ax2.set_xlabel('x')
>>> ax2.grid()

>>> plt.show()

boost_histogram.numpy.histogramdd(a: tuple[ArrayLike, ...], bins: int | tuple[int, ...] |
tuple[np.typing.NDArray[Any], ...] = 10, range: None | Sequence[None
| tuple[float, float]] = None, normed: None = None, weights: ArrayLike
| None = None, density: bool = False, *, histogram: None |
type[_hist.Histogram] = None, storage: _storage.Storage =
boost_histogram._core.storage.double, threads: int | None = None)→
Any

Return a boost-histogram object using the same arguments as numpy’s histogramdd. This does not support the
deprecated normed=True argument. Three extra arguments are added: histogram=bh.Histogram will enable
object based output, storage=bh.storage.* lets you set the storage used, and threads=int lets you set the number
of threads to fill with (0 for auto, None for 1).

Compute the multidimensional histogram of some data.

Parameters

• sample ((N, D) array, or (N, D) array_like) – The data to be histogrammed.

Note the unusual interpretation of sample when an array_like:

– When an array, each row is a coordinate in a D-dimensional space - such as
histogramdd(np.array([p1, p2, p3])).

– When an array_like, each element is the list of values for single coordinate - such as
histogramdd((X, Y, Z)).

111

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

boost_histogram

The first form should be preferred.

• bins (sequence or int, optional) – The bin specification:

– A sequence of arrays describing the monotonically increasing bin edges along each di-
mension.

– The number of bins for each dimension (nx, ny, . . . =bins)

– The number of bins for all dimensions (nx=ny=. . .=bins).

• range (sequence, optional) – A sequence of length D, each an optional (lower, upper)
tuple giving the outer bin edges to be used if the edges are not given explicitly in bins. An
entry of None in the sequence results in the minimum and maximum values being used for
the corresponding dimension. The default, None, is equivalent to passing a tuple of D None
values.

• density (bool, optional) – If False, the default, returns the number of samples in
each bin. If True, returns the probability density function at the bin, bin_count /
sample_count / bin_volume.

• weights ((N,) array_like, optional) – An array of values w_i weighing each sample
(x_i, y_i, z_i, . . .). Weights are normalized to 1 if density is True. If density is False, the
values of the returned histogram are equal to the sum of the weights belonging to the samples
falling into each bin.

Returns

• H (ndarray) – The multidimensional histogram of sample x. See density and weights for the
different possible semantics.

• edges (list) – A list of D arrays describing the bin edges for each dimension.

See also:

histogram
1-D histogram

histogram2d
2-D histogram

Examples

>>> r = np.random.randn(100,3)
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
((5, 8, 4), 6, 9, 5)

112 Chapter 27. boost_histogram.numpy

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

CHAPTER

TWENTYEIGHT

BOOST_HISTOGRAM.STORAGE

class boost_histogram.storage.AtomicInt64(*args: Any, **kwargs: Any)
Bases: atomic_int64, Storage

accumulator

alias of int

class boost_histogram.storage.Double(*args: Any, **kwargs: Any)
Bases: double, Storage

accumulator

alias of float

class boost_histogram.storage.Int64(*args: Any, **kwargs: Any)
Bases: int64, Storage

accumulator

alias of int

class boost_histogram.storage.Mean(*args: Any, **kwargs: Any)
Bases: mean, Storage

class boost_histogram.storage.Storage

Bases: object

accumulator: ClassVar[type[int] | type[float] |
type[boost_histogram._core.accumulators.WeightedMean] |
type[boost_histogram._core.accumulators.WeightedSum] |
type[boost_histogram._core.accumulators.Mean]]

class boost_histogram.storage.Unlimited(*args: Any, **kwargs: Any)
Bases: unlimited, Storage

accumulator

alias of float

class boost_histogram.storage.Weight(*args: Any, **kwargs: Any)
Bases: weight, Storage

class boost_histogram.storage.WeightedMean(*args: Any, **kwargs: Any)
Bases: weighted_mean, Storage

113

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.ClassVar
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any

boost_histogram

114 Chapter 28. boost_histogram.storage

CHAPTER

TWENTYNINE

BOOST_HISTOGRAM.TAG

class boost_histogram.tag.Locator(offset: int = 0)
Bases: object

NAME = ''

offset

class boost_histogram.tag.Slicer

Bases: object

This is a simple class to make slicing inside dictionaries simpler. This is how it should be used:

s = bh.tag.Slicer()

h[{0: s[::bh.rebin(2)]}] # rebin axis 0 by two

class boost_histogram.tag.at(value: int)
Bases: object

value

class boost_histogram.tag.loc(value: str | float, offset: int = 0)
Bases: Locator

value

class boost_histogram.tag.rebin(value: int)
Bases: object

factor

boost_histogram.tag.sum(iterable, / , start=0)
Return the sum of a ‘start’ value (default: 0) plus an iterable of numbers

When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.

115

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

boost_histogram

116 Chapter 29. boost_histogram.tag

CHAPTER

THIRTY

BOOST_HISTOGRAM.VERSION

117

boost_histogram

118 Chapter 30. boost_histogram.version

CHAPTER

THIRTYONE

ACKNOWLEDGEMENTS

This library was primarily developed by Henry Schreiner and Hans Dembinski.

Support for this work was provided by the National Science Foundation cooperative agreement OAC-1836650 (IRIS-
HEP) and OAC-1450377 (DIANA/HEP). Any opinions, findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

119

boost_histogram

120 Chapter 31. Acknowledgements

CHAPTER

THIRTYTWO

INDICES AND TABLES

• genindex

• modindex

• search

121

boost_histogram

122 Chapter 32. Indices and tables

PYTHON MODULE INDEX

b
boost_histogram._internal.hist, 95
boost_histogram.accumulators, 105
boost_histogram.axis, 99
boost_histogram.axis.transform, 103
boost_histogram.numpy, 107
boost_histogram.storage, 113
boost_histogram.tag, 115

123

boost_histogram

124 Python Module Index

INDEX

A
accumulator (boost_histogram.storage.AtomicInt64 at-

tribute), 113
accumulator (boost_histogram.storage.Double at-

tribute), 113
accumulator (boost_histogram.storage.Int64 attribute),

113
accumulator (boost_histogram.storage.Storage at-

tribute), 113
accumulator (boost_histogram.storage.Unlimited

attribute), 113
Accumulator (in module

boost_histogram.accumulators), 105
ArrayTuple (class in boost_histogram.axis), 99
at (class in boost_histogram.tag), 115
AtomicInt64 (class in boost_histogram.storage), 113
axes (boost_histogram._internal.hist.Histogram at-

tribute), 95
AxesTuple (class in boost_histogram.axis), 99
Axis (class in boost_histogram.axis), 99
AxisTransform (class in

boost_histogram.axis.transform), 103

B
bin() (boost_histogram.axis.AxesTuple method), 99
bin() (boost_histogram.axis.Axis method), 99
Boolean (class in boost_histogram.axis), 100
boost_histogram._internal.hist

module, 95
boost_histogram.accumulators

module, 105
boost_histogram.axis

module, 99
boost_histogram.axis.transform

module, 103
boost_histogram.numpy

module, 107
boost_histogram.storage

module, 113
boost_histogram.tag

module, 115

broadcast() (boost_histogram.axis.ArrayTuple
method), 99

C
centers (boost_histogram.axis.AxesTuple property), 99
centers (boost_histogram.axis.Axis property), 99
circular (boost_histogram.axis.Traits attribute), 100
continuous (boost_histogram.axis.Traits attribute), 100
copy() (boost_histogram._internal.hist.Histogram

method), 95
counts() (boost_histogram._internal.hist.Histogram

method), 95

D
discrete (boost_histogram.axis.Traits property), 100
Double (class in boost_histogram.storage), 113

E
edges (boost_histogram.axis.AxesTuple property), 99
edges (boost_histogram.axis.Axis property), 99
empty() (boost_histogram._internal.hist.Histogram

method), 95
extent (boost_histogram.axis.AxesTuple property), 99
extent (boost_histogram.axis.Axis property), 99

F
factor (boost_histogram.tag.rebin attribute), 115
fill() (boost_histogram._internal.hist.Histogram

method), 95
forward() (boost_histogram.axis.transform.AxisTransform

method), 103
Function (class in boost_histogram.axis.transform), 103

G
growth (boost_histogram.axis.Traits attribute), 100

H
Histogram (class in boost_histogram._internal.hist), 95
histogram() (in module boost_histogram.numpy), 107
histogram2d() (in module boost_histogram.numpy),

108

125

boost_histogram

histogramdd() (in module boost_histogram.numpy),
111

I
index() (boost_histogram.axis.AxesTuple method), 99
index() (boost_histogram.axis.Axis method), 99
index() (boost_histogram.axis.StrCategory method),

100
Int64 (class in boost_histogram.storage), 113
IntCategory (class in boost_histogram.axis), 100
Integer (class in boost_histogram.axis), 100
inverse() (boost_histogram.axis.transform.AxisTransform

method), 103

K
kind (boost_histogram._internal.hist.Histogram prop-

erty), 96

L
loc (class in boost_histogram.tag), 115
Locator (class in boost_histogram.tag), 115

M
Mean (class in boost_histogram.storage), 113
module

boost_histogram._internal.hist, 95
boost_histogram.accumulators, 105
boost_histogram.axis, 99
boost_histogram.axis.transform, 103
boost_histogram.numpy, 107
boost_histogram.storage, 113
boost_histogram.tag, 115

N
NAME (boost_histogram.tag.Locator attribute), 115
ndim (boost_histogram._internal.hist.Histogram prop-

erty), 96

O
offset (boost_histogram.tag.Locator attribute), 115
ordered (boost_histogram.axis.Traits attribute), 100
overflow (boost_histogram.axis.Traits attribute), 101

P
Pow (class in boost_histogram.axis.transform), 103
power (boost_histogram.axis.transform.Pow property),

103
project() (boost_histogram._internal.hist.Histogram

method), 96

R
rebin (class in boost_histogram.tag), 115
Regular (class in boost_histogram.axis), 100

reset() (boost_histogram._internal.hist.Histogram
method), 96

S
shape (boost_histogram._internal.hist.Histogram prop-

erty), 96
size (boost_histogram._internal.hist.Histogram prop-

erty), 96
size (boost_histogram.axis.AxesTuple property), 99
size (boost_histogram.axis.Axis property), 100
Slicer (class in boost_histogram.tag), 115
Storage (class in boost_histogram.storage), 113
storage_type (boost_histogram._internal.hist.Histogram

property), 96
StrCategory (class in boost_histogram.axis), 100
sum() (boost_histogram._internal.hist.Histogram

method), 96
sum() (in module boost_histogram.tag), 115

T
to_numpy() (boost_histogram._internal.hist.Histogram

method), 96
traits (boost_histogram.axis.Axis property), 100
Traits (class in boost_histogram.axis), 100
transform (boost_histogram.axis.Regular property),

100

U
underflow (boost_histogram.axis.Traits attribute), 101
Unlimited (class in boost_histogram.storage), 113

V
value (boost_histogram.tag.at attribute), 115
value (boost_histogram.tag.loc attribute), 115
value() (boost_histogram.axis.AxesTuple method), 99
value() (boost_histogram.axis.Axis method), 100
values() (boost_histogram._internal.hist.Histogram

method), 96
Variable (class in boost_histogram.axis), 101
variances() (boost_histogram._internal.hist.Histogram

method), 97
view() (boost_histogram._internal.hist.Histogram

method), 97

W
Weight (class in boost_histogram.storage), 113
WeightedMean (class in boost_histogram.storage), 113
widths (boost_histogram.axis.AxesTuple property), 99
widths (boost_histogram.axis.Axis property), 100

126 Index

	Installation
	Supported platforms
	Binaries available:
	Conda-Forge
	Source builds

	Quickstart
	Making a histogram
	Filling a histogram
	Slicing and rebinning
	Accessing the contents
	Setting the contents
	Accessing Axes
	Saving Histograms
	Computing with Histograms
	Comparing with Boost.Histogram

	Histogram
	Filling
	Data
	Views
	Operations
	Saving a Histogram

	Axes
	Axis types
	Regular axis
	Regular axis: Transforms
	Variable axis
	Integer axis

	Category axis
	Manipulating Axes

	Storages
	Simple storages
	Double
	Unlimited
	Int64
	AtomicInt64

	Accumulator storages
	Weight
	Mean
	WeightedMean

	Accumulators
	Common properties
	Types
	Sum
	WeightedSum
	Mean
	WeightedMean

	Views

	Using Transforms
	Simple custom transforms
	Pure Python
	Using Numba
	Manual compilation

	Picklable custom transforms
	Pure Python
	Using Numba
	Manual compilation

	Indexing
	Boost-histogram specific details

	Plotting
	Analyses examples
	Bool and category axes

	NumPy compatibility
	Histogram conversion
	Accessing the storage array
	NumPy tuple output

	NumPy adaptors
	1D histogram example
	2D Histogram example

	Subclassing (advanced)
	Comparison with Boost.Histogram
	Removals
	Changes
	Additions

	Simple Example
	ROOT file format example
	Threaded Fills
	Performance Comparison
	Testing setup
	Traditional 1D NumPy Histogram
	Boost histogram 1D
	Boost histogram 1D NumPy clone
	Boost histogram in 1D, threaded
	Boost histogram 1D NumPy clone, threaded
	Traditional 2D NumPy histogram
	Boost histogram in 2D
	Boost histogram 2D NumPy clone
	Boost histogram in 2D, threaded
	Boost histogram 2D NumPy clone, threaded

	XArray Example
	Simple 1D example
	xhistogram
	boost-histogram (direct usage)
	boost-histogram (adapter function)
	More features

	2D example
	xhistogram
	boost-histogram
	Speed comparson
	Weighted histogram

	Using boost-histogram
	1: Basic 1D histogram
	1.1: Data

	2: Drop-in replacement for NumPy
	3: More dimensions
	4: UHI
	5: Understanding accumulators
	6: Changing the storage
	7: Making a density histogram
	8: Axis types
	9: And, circular, too!

	Contributing
	Building from source
	Setting up a development environment
	Nox
	Pip
	CMake

	Testing
	Benchmarking
	Formatting
	Clang-Tidy
	Include what you use
	Timing steps
	Common tasks

	Support
	Changelog
	Version 1.4
	Version 1.4.1
	Features
	Bugfixes
	Backend and docs

	Version 1.4.0
	Features
	Changes
	Bugfixes
	Backend and docs

	Version 1.3
	Version 1.3.2
	Changes
	Bug fixes
	Backend and docs

	Version 1.3.1
	Bug fixes

	Version 1.3.0
	User changes
	Bug fixes
	Developer changes

	Version 1.2
	Version 1.2.1
	User changes
	Bug fixes
	Developer changes

	Version 1.2.0
	User changes
	Bug fixes
	Developer changes

	Version 1.1
	Version 1.1.0
	User changes
	Bug fixes
	Developer changes

	Version 1.0
	Version 1.0.2
	Version 1.0.1
	Subclassing Histogram changes
	Bug fixes
	Typing changes

	Version 1.0.0
	User changes
	Subclassing Histogram changes
	Bug fixes

	Version 0.13
	Version 0.13.2
	Version 0.13.1
	Version 0.13.0
	User changes
	Bug fixes
	Developer changes

	Version 0.12
	Version 0.12.0
	User changes
	Bug fixes
	Developer changes
	Upgrade warning

	Version 0.11
	Version 0.11.1
	Version 0.11.0
	User changes
	Bug fixes
	Developer changes

	Version 0.10
	Version 0.10.2
	Bug fixes
	Developer changes

	Version 0.10.1
	Bug fixes

	Version 0.10.0
	User changes
	Bug fixes

	Version 0.9
	Version 0.9.0
	User changes
	Developer changes
	Bug fixes

	Version 0.8
	Version 0.8.0
	User changes
	Bug fixes
	Developer changes

	Version 0.7
	Version 0.7.0
	User changes
	Bug fixes
	Developer changes

	Version 0.6
	Version 0.6.2
	Bug fixes
	Developer changes

	Version 0.6.1
	User changes
	Bug fixes

	Version 0.6.0
	User changes
	Bug fixes
	Developer changes

	Version 0.5
	Version 0.5.2
	User changes:
	Bug fixes:
	Developer changes:

	Version 0.5.1
	User changes:
	Bug fixes:

	Version 0.5.0
	Known issues:

	boost_histogram
	boost_histogram.axis
	boost_histogram.axis.transform
	boost_histogram.accumulators
	boost_histogram.numpy
	boost_histogram.storage
	boost_histogram.tag
	boost_histogram.version
	Acknowledgements
	Indices and tables
	Python Module Index
	Index

